
Large Language Models and Recommender Systems

Silin DU

Department of Management Science and Engineering
School of Economics and Management

Tsinghua University
dsl21@mails.tsinghua.edu.cn

SEM
TSINGHUA

清华经管学院
UNIVERSITY

September 22, 2023

Overview I

In this slide, we first introduce large language models (LLMs) following [51], including

I Key concepts and recent developments.

I Pre-training.

I Instruction tuning.

I Alignment tuning.

I Parameter-efficient and memory-efficient model adaptation.

I In-context learning and chain-of-thought prompting.

I Planning for complex task solving.

Then, we focus on LLMs for recommender systems [8].

I LLMs for generative recommendations [23]

I TALLRec

I ChatGPT for recommendations

Silin Du (MS&E) LLMs and RS September 22, 2023 1 / 117

Overview II

Finally, we share LLMs for job recommendations.

I RecruitmentPro

I Generative Job Recommendations: GIRL

Silin Du (MS&E) LLMs and RS September 22, 2023 2 / 117

Contents

Large Language Model
Key Concepts and Recent Developments
Pre-training
Instruction Tuning
Alignment Tuning
Parameter-efficient and Memory-efficient
Model Adaptation
In-context Learning and Chain-of-thought
Prompting

Planning for Complex Task Solving
Capacity Evaluation
LLMs for Recommendations
LLMs for Recommendations
Generative Recommendation with LLMs
TALLRec
ChatGPT for Recommendations
LLM for Job Recommendation
RecruitPro
Generative Job Recommendations

Language Model

Language modeling (LM) is one of the major approaches to advancing language intelligence of ma-
chines.

I Statistical language model (SLM): Markov assumption, n-gram language models

I Neural language model (NLM): characterize the probability of word sequences by neural net-
works, word2vec

I Pre-trained language model (PLM): pre-training and fine-tuning, ELMo, BERT(330M)

I Large language model (LLM): large-sized PLMs, GPT-2(1.5B)

Three major differences between LLMs and PLMs:

I LLMs display some surprising emergent abilities [40] that may not be observed in previous
smaller PLMs.

I LLMs would revolutionize the way that humans develop and use AI algorithms.

I The development of LLMs no longer draws a clear distinction between research and engineer-
ing.

Silin Du (MS&E) LLMs and RS September 22, 2023 3 / 117

Scaling Laws for LLMs I

Large language models (LLMs) refer to Transformer language models that contain tens of or hundreds
of billions (or more) of parameters. (≥10B)
Extensive research has shown that scaling can largely improve the model capacity of LLMs.

I KM scaling law. (Open AI)

L(N) =

(
Nc

N

)αN

, αN ∼ 0.076, Nc ∼ 8.8× 1013

L(D) =

(
Dc

D

)αD

, αD ∼ 0.095, Dc ∼ 5.4× 1013

L(C) =
(

Cc

C

)αC

, αC ∼ 0.050, Cc ∼ 3.1× 108

N: model size, D: dataset size, C: the amount of training compute, L(·): the cross entropy loss,
c: compute budget.

Silin Du (MS&E) LLMs and RS September 22, 2023 4 / 117

Scaling Laws for LLMs II

I Chinchilla scaling law. (Google DeepMind)

L(N, D) = E +
A

Nα
+

B
Dβ

where E = 1.69, A = 406, B = 410.7, α = 0.34, β = 0.28.

The KM scaling law favors a larger budget allocation in model size than the data size, while the Chin-
chilla scaling law argues that the two sizes should be increased in equal scales,

Silin Du (MS&E) LLMs and RS September 22, 2023 5 / 117

Emergent Abilities I

Emergent abilities of LLMs are the abilities that are not present in small models but arise in large
models [40].

I In-context learning (ICL). It’s formally introduced by 175B GPT-3 [2].
Assuming that the language model has been provided with a natural language instruction
and/or several task demonstrations, it can generate the expected output for the test instances
by completing the word sequence of input text, without requiring additional training or gradient
update.

I Instruction following.
By fine-tuning with a mixture of multi-task datasets formatted via natural language descrip-
tions (called instruction tuning), LLMs are shown to perform well on unseen tasks that are also
described in the form of instructions.

Silin Du (MS&E) LLMs and RS September 22, 2023 6 / 117

Emergent Abilities II

I Step-by-step reasoning.
With the chain-of-thought (CoT) prompting strategy [41], LLMs can solve such tasks by utiliz-
ing the prompting mechanism that involves intermediate reasoning steps for deriving the final
answer.

Silin Du (MS&E) LLMs and RS September 22, 2023 7 / 117

Key Techniques for LLMs I

I Scaling.
GPT-3 and PaLM explored the scaling limits by increasing the model size to 175B and 540B,
respectively. Since compute budget is usually limited, scaling laws can be further employed to
conduct a more compute-efficient allocation of the compute resources.

I Training.
To support distributed training, several optimization frameworks have been released to facil-
itate the implementation and deployment of parallel algorithms, such as DeepSpeed [31] and
Megatron-LM [36].

I Ability eliciting.
It is useful to design suitable task instructions or specific in-context learning strategies to elicit
potential abilities of LLMs.

Silin Du (MS&E) LLMs and RS September 22, 2023 8 / 117

Key Techniques for LLMs II

I Alignment tuning.
It is necessary to align LLMs with human values, e.g., helpful, honest, and harmless. For this
purpose, InstructGPT [29] designs an effective tuning approach that enables LLMs to follow the
expected instructions, which utilizes the technique of reinforcement learning with human feedback
(RLHF).

I Tools manipulation.
ChatGPT has enabled the mechanism of using external plugins (existing or newly created apps),
which are by analogy with the "eyes and ears" of LLMs.

Silin Du (MS&E) LLMs and RS September 22, 2023 9 / 117

7

2020

2023

2021
1-4

5-8

9-10

1-3

4-6

7-10

11-12

T5

GPT-3

WebGPT

BLOOMZ

Galatica

mT0 LLaMA

2019

FLAN

InstructGPT

GPT-NeoX-20B

CodeGen

OPT

OPT-IML

MT-NLG

T0

Tk-Instruct

1-6

GPT-4

GShard

UL2

PaLM Flan-T5

Flan-PaLM

Sparrow

ChatGPT

Ernie 3.0 Titan

Yuan 1.0

PanGu-Σ

Gopher

GLaM

mT5 PanGu-

PLUG

Bard

LaMDA
CPM-2

HyperCLOVA

Publicly Available

Codex

Jurassic-1

Ernie 3.0

Anthropic

NLLBCohere

Pythia

Vicuna

Luminous

YaLM

11-12

2022

GLM

AlexaTM

BLOOM

WeLM

AlphaCode

Chinchilla
CodeGeeX

Falcon

Fig. 2: A timeline of existing large language models (having a size larger than 10B) in recent years. The timeline was
established mainly according to the release date (e.g., the submission date to arXiv) of the technical paper for a model. If
there was not a corresponding paper, we set the date of a model as the earliest time of its public release or announcement.
We mark the LLMs with publicly available model checkpoints in yellow color. Due to the space limit of the figure, we only
include the LLMs with publicly reported evaluation results.

Fig. 3: A brief illustration for the technical evolution of GPT-series models. We plot this figure mainly based on the papers,
blog articles and official APIs from OpenAI. Here, solid lines denote that there exists an explicit evidence (e.g., the official
statement that a new model is developed based on a base model) on the evolution path between two models, while dashed
lines denote a relatively weaker evolution relation.

developed two initial GPT models, namely GPT-1 [105] and
GPT-2 [26], which can considered as the foundation to more
powerful models subsequently i.e., GPT-3 and GPT-4.

• GPT-1. In 2017, the Transformer model [22] was intro-
duced by Google, and the OpenAI team quickly adapted
their language modeling work to this new neural network
architecture. They released the first GPT model in 2018,
i.e., GPT-1 [105], and coined the abbreviation term GPT
as the model name, standing for Generative Pre-Training.
GPT-1 was developed based on a generative, decoder-only
Transformer architecture, and adopted a hybrid approach of
unsupervised pretraining and supervised fine-tuning. GPT-

1 has set up the core architecture for the GPT-series models
and established the underlying principle to model natural
language text, i.e., predicting the next word.

• GPT-2. Following a similar architecture of GPT-1,
GPT-2 [26] increased the parameter scale to 1.5B, which
was trained with a large webpage dataset WebText. As
claimed in the paper of GPT-2, it sought to perform
tasks via unsupervised language modeling, without explicit
fine-tuning using labeled data. To motivate the approach,
they introduced a probabilistic form for multi-task solving,
i.e., p(output|input, task) (similar approaches have been
adopted in [106]), which predicts the output conditioned on

Fig. 1.1: A timeline of existing large language models (having a size larger than 10B) in recent years.

7

Fig. 2: A timeline of existing large language models (having a size larger than 10B) in recent years. The timeline was
established mainly according to the release date (e.g., the submission date to arXiv) of the technical paper for a model. If
there was not a corresponding paper, we set the date of a model as the earliest time of its public release or announcement.
We mark the LLMs with publicly available model checkpoints in yellow color. Due to the space limit of the figure, we only
include the LLMs with publicly reported evaluation results.

GPT-1
2018.06

decoder-only architecture
generative pre-training

GPT-2
2019.02

unsupervised multitask learner
scaling the model size

in-context learning
exploring scaling limits

code pre-training

gpt-3.5-turbo
2023.03

excellent comprehensive ability

text-davinci-002
2022.03

instruction following

code-davinci-002
2022.03

capable code model

+code

+chat+RLHF+instruction

Codex
2021.07

GPT-3
2020.05

GPT-4
2023.03

strong reasoning ability
multi-modal ability

GPT-3.5
2022.03

ChatGPTtext-davinci-003
2022.09

human alignment

Fig. 3: A brief illustration for the technical evolution of GPT-series models. We plot this figure mainly based on the papers,
blog articles and official APIs from OpenAI. Here, solid lines denote that there exists an explicit evidence (e.g., the official
statement that a new model is developed based on a base model) on the evolution path between two models, while dashed
lines denote a relatively weaker evolution relation.

developed two initial GPT models, namely GPT-1 [105] and
GPT-2 [26], which can considered as the foundation to more
powerful models subsequently i.e., GPT-3 and GPT-4.

• GPT-1. In 2017, the Transformer model [22] was intro-
duced by Google, and the OpenAI team quickly adapted
their language modeling work to this new neural network
architecture. They released the first GPT model in 2018,
i.e., GPT-1 [105], and coined the abbreviation term GPT
as the model name, standing for Generative Pre-Training.
GPT-1 was developed based on a generative, decoder-only
Transformer architecture, and adopted a hybrid approach of
unsupervised pretraining and supervised fine-tuning. GPT-

1 has set up the core architecture for the GPT-series models
and established the underlying principle to model natural
language text, i.e., predicting the next word.

• GPT-2. Following a similar architecture of GPT-1,
GPT-2 [26] increased the parameter scale to 1.5B, which
was trained with a large webpage dataset WebText. As
claimed in the paper of GPT-2, it sought to perform
tasks via unsupervised language modeling, without explicit
fine-tuning using labeled data. To motivate the approach,
they introduced a probabilistic form for multi-task solving,
i.e., p(output|input, task) (similar approaches have been
adopted in [106]), which predicts the output conditioned on

Fig. 1.2: Technical evolution of GPT-series models.

10

LLaMA

BenTsao

Baize

Koala

Ziya

BELLE

LLaMA
Adapter

Guanaco

Alpaca
Lora

Lawyer
LLaMA

+ chat data

+ task data

LLaVA

InstructBLIP

Yulan-Chat

+ task data

Multimodal models

+ task data

Data inheritance

Model inheritance

Vicuna

Alpaca
Panda

PandaGPT

Cornucopia

Chinese
LLaMA

TaoLi

+ chat data

+ chat data

+ task data

Chinese
Alpaca

ChatMed

+ synthetic data

Chinese
Vicuna

Linly-Chinese-LLaMA

Open-Chinese-LLaMA

+ task data

LAWGPT

RLHF

PKU-Beaver

Chatbridge

OpenFlamingo

VisionLLM

MiniGPT-4

Goat

QiZhenGPT

+ chat data

BiLLa

+ task data

Math Finance

Continue pre-training

Instruction
tuning

Law Bilingualism EducationMedicine

Parameter-efficient fine-tuning

Full parameter fine-tuning

+ chinese data

+ synthetic data

+ Alpaca data

Fig. 4: An evolutionary graph of the research work conducted on LLaMA. Due to the huge number, we cannot include all
the LLaMA variants in this figure, even much excellent work. To support incremental update, we share the source file of
this figure, and welcome the readers to include the desired models by submitting the pull requests on our GitHub page.

parameters. As a popular LLM, LLaMA (65B version) [57],
which contains approximately five times as many parame-
ters as other models, has exhibited superior performance in
tasks related to instruction following. Due to the openness
and effectiveness, LLaMA has attracted significant attention
from the research community, and many efforts [119–122]
have been devoted to fine-tuning or continually pre-training
its different model versions for implementing new models
or tools. More recently, Falcon [117], as another open-
source LLM, has also achieved very excellent performance
on open benchmarks. It is featured by a more careful data
cleaning process to prepare the pre-training data (with a
publicly shared dataset RefinedWeb [123]). Typically, pre-
training models at this scale require hundreds or even
thousands of GPUs or TPUs. For instance, GPT-NeoX-20B
uses 12 supermicro servers, each equipped with 8 NVIDIA
A100-SXM4-40GB GPUs, while LLaMA utilizes 2,048 A100-
80G GPUs as reported in their original publications. To
accurately estimate the computation resources needed, it
is suggested to use the metrics measuring the number of
involved computations such as FLOPS (i.e., FLoating point
number Operations Per Second) [30].

Models with Hundreds of Billions of Parameters. For
models in this category, only a handful of models have been
publicly released. For example, OPT [81], OPT-IML [85],
BLOOM [69], and BLOOMZ [84] have nearly the same num-
ber of parameters as GPT-3 (175B version), while GLM [83]

and Galactica [35] have 130B and 120B parameters, re-
spectively. Among them, OPT (175B version), with the
instruction-tuned version OPT-IML, has been specially mo-
tivated for open sharing, which aims to enable researchers
to carry out reproducible research at scale. For research
in cross-lingual generalization, BLOOM (176B version) and
BLOOMZ (176B version) can be used as base models, due to
the competence in multilingual language modeling tasks.
As a bilingual LLM, GLM has also provided a popular
small-sized Chinese chat model ChatGLM2-6B (a updated
version for ChatGLM-6B), which is featured with many
improvements in efficiency and capacity (e.g., quantization,
32K-length context, fast inference rate). Models of this scale
typically require thousands of GPUs or TPUs to train. For
instance, OPT (175B version) used 992 A100-80GB GPUs,
while GLM (130B version) used a cluster of 96 NVIDIA
DGX-A100 (8x40G) GPU nodes.

LLaMA Model Family. The collection of LLaMA mod-
els [57] were introduced by Meta AI in February, 2023,
consisting of four sizes (7B, 13B, 30B and 65B). Since
released, LLaMA has attracted extensive attention from
both research and industry communities. LLaMA mod-
els have achieved very excellent performance on various
open benchmarks, which have become the most popu-
lar open language models thus far. A large number of
researchers have extended LLaMA models by either in-
struction tuning or continual pretraining. In particular, in-

Fig. 1.3: Research work conducted on LLaMA

Contents

Large Language Model
Key Concepts and Recent Developments
Pre-training
Instruction Tuning
Alignment Tuning
Parameter-efficient and Memory-efficient
Model Adaptation
In-context Learning and Chain-of-thought
Prompting

Planning for Complex Task Solving
Capacity Evaluation
LLMs for Recommendations
LLMs for Recommendations
Generative Recommendation with LLMs
TALLRec
ChatGPT for Recommendations
LLM for Job Recommendation
RecruitPro
Generative Job Recommendations

Data

General Text Data

I Webpages. LLMs can gain diverse linguistic knowledge and generalization capabilities. Com-
monCrawl1 contains a large amount of data from the web.

I Conversation text can enhance the conversational competence of LLMs and potentially improve
their performance on a range of question-answering tasks.

I Books provide an important source of formal long texts.

Specialized Text Data

I Multilingual text can enhance the multilingual abilities of language understanding and genera-
tion. For example, PaLM [3] have curated multilingual data covering 122 languages.

I Scientific text is mainly collected from arXiv papers, scientific textbooks, math webpages, and
other related scientific resources.

I Code. [12] also speculates that training on code might be a source of complex reasoning abilities
(e.g., chain-of-thought ability).

1https://commoncrawl.org/
Silin Du (MS&E) LLMs and RS September 22, 2023 13 / 117

Data Preprocessing

15

Language Filtering

Metric Filtering

Statistic Filtering

Keyword Filtering

Raw Corpus Quality Filtering De-duplication

Sentence-level

Document-level

Set-level

Privacy Reduction Tokenization Ready to
pre-train!

32, 145, 66, 79, 12, 56, ...Alice is writing a paper about
LLMs. #$^& Alice is writing
a paper about LLMs.

Alice is writing a paper about
LLMs. Alice is writing a paper
about LLMs.

Replace('Alice') is
writing a paper about LLMs.

Encode('[Somebody] is
writing a paper about LLMs.')

Detect Personality
Identifiable
Information (PII)

Remove PII

Reuse Existing
Tokenizer
SentencePiece

Byte-level BPE

Fig. 6: An illustration of a typical data preprocessing pipeline for pre-training large language models.

De-duplication. Existing work [169] has found that dupli-
cate data in a corpus would reduce the diversity of language
models, which may cause the training process to become un-
stable and thus affect the model performance. Therefore, it is
necessary to de-duplicate the pre-training corpus. Specially,
de-duplication can be performed at different granularities,
including sentence-level, document-level, and dataset-level
de-duplication. First, low-quality sentences that contain re-
peated words and phrases should be removed, as they may
introduce repetitive patterns in language modeling [170].
At the document level, existing studies mostly rely on the
overlap ratio of surface features (e.g., words and n-grams
overlap) between documents to detect and remove duplicate
documents containing similar contents [57, 59, 69, 171].
Furthermore, to avoid the dataset contamination problem,
it is also crucial to prevent the overlap between the training
and evaluation sets [56], by removing the possible duplicate
texts from the training set. It has been shown that the three
levels of de-duplication are useful to improve the training
of LLMs [56, 172], which should be jointly used in practice.

Privacy Redaction. The majority of pre-training text data is
obtained from web sources, including user-generated con-
tent involving sensitive or personal information, which may
increase the risk of privacy breaches [173]. Thus, it is nec-
essary to remove the personally identifiable information (PII)
from the pre-training corpus. One direct and effective ap-
proach is to employ rule-based methods, such as keyword
spotting, to detect and remove PII such as names, addresses,
and phone numbers [143]. Furthermore, researchers also
find that the vulnerability of LLMs under privacy attacks
can be attributed to the presence of duplicate PII data in the
pre-training corpus [174]. Therefore, de-duplication can also
reduce privacy risks to some extent.

Tokenization. Tokenization is also a crucial step for data
preprocessing. It aims to segment raw text into sequences
of individual tokens, which are subsequently used as the
inputs of LLMs. In traditional NLP research (e.g., sequence
labeling with conditional random fields [175]), word-based
tokenization is the predominant approach, which is more
aligned with human’s language cognition. However, word-
based tokenization can yield different segmentation results
for the same input in some languages (e.g., Chinese word
segmentation), generate a huge word vocabulary containing
many low-frequency words, and also suffer from the “out-
of-vocabulary” issue. Thus, several neural network models
employ character as the minimum unit to derive the word
representation (e.g., a CNN word encoder in ELMo [21]).

Recently, subword tokenizers have been widely used in Trans-
former based language models, typically including Byte-
Pair Encoding tokenization, WordPiece tokenization and
Unigram tokenization. HuggingFace has maintained an
excellent online NLP course on tokenizer20 with running
examples, and we refer to the beginners to this course. Next,
we briefly describe the three representative tokenization
methods.

• Byte-Pair Encoding (BPE) tokenization. BPE was origi-
nally proposed as a general data compression algorithm in
1994 [176], and then adapted to NLP for tokenization [177].
It starts with a set of basic symbols (e.g., the alphabets
and boundary characters), and iteratively combine frequent
pairs of two consecutive tokens in the corpus as new to-
kens (called merge). For each merge, the selection criterion
is based on the co-occurrence frequency of two contigu-
ous tokens: the top frequent pair would be selected. The
merge process continues until it reaches the predefined
size. Further, Byte-level BPE has been used to improve the
tokenization quality for multilingual corpus (e.g., the text
containing non-ASCII characters) by considering bytes as the
basic symbols for merge. Representative language models
with this tokenization approach include GPT-2, BART, and
LLaMA.

• WordPiece tokenization. WordPiece was a Google inter-
nal subword tokenization algorithm. It was originally pro-
posed by Google in developing voice search systems [178].
Then, it was used in the neural machine translation system
in 2016 [179], and was adopted as the word tokenizer for
BERT in 2018 [23]. WordPiece has a very similar idea with
BPE by iteratively merging consecutive tokens, whereas
taking a slightly different selection criterion for the merge.
To conduct the merge, it first trains a language model and
employs it to score all possible pairs. Then, at each merge, it
selects the pair that leads to the most increase in the likeli-
hood of training data. Since Google has’t released the official
implementation of the WordPiece algorithm, HuggingFace
gives a more intuitive selection measure in its online NLP
course: a pair is scored by dividing the co-occurrence count
by the product of the occurrence counts of two tokens in the
pair based on training corpus.

• Unigram tokenization. Unlike BPE and WordPiece, Un-
igram tokenization [180] starts with a sufficiently large
set of possible substrings or subtokens for a corpus, and
iteratively removes the tokens in the current vocabulary
until the expected vocabulary size is reached. As the se-

20. https://huggingface.co/learn/nlp-course/chapter6

Fig. 1.4: Typical data preprocessing pipeline for pre-training large language models.

Silin Du (MS&E) LLMs and RS September 22, 2023 14 / 117

Architecture I

Transformer architecture has become the de facto backbone to develop various LLMs.

I Encoder-decoder. The vanilla Transformer model is built on the encoder-decoder architecture.
So far, there are only a small number of LLMs that are built based on the encoder-decoder
architecture.

I Causal Decoder. The causal decoder architecture incorporates the unidirectional attention mask,
to guarantee that each input token can only attend to the past tokens and itself. It’s also known
as " decoder-only architecture ".

I Prefix Decoder. The prefix decoder architecture revises the masking mechanism of causal de-
coders, to enable performing bidirectional attention over the prefix tokens and unidirectional
attention only on generated tokens. (GLM-130B)

Silin Du (MS&E) LLMs and RS September 22, 2023 15 / 117

Architecture II

17

TABLE 3: Model cards of several selected LLMs with public configuration details. Here, PE denotes position embedding,
#L denotes the number of layers, #H denotes the number of attention heads, dmodel denotes the size of hidden states, and
MCL denotes the maximum context length during training.

Model Category Size Normalization PE Activation Bias #L #H dmodel MCL

GPT3 [55] Causal decoder 175B Pre LayerNorm Learned GeLU X 96 96 12288 2048
PanGU- ↵ [75] Causal decoder 207B Pre LayerNorm Learned GeLU X 64 128 16384 1024
OPT [81] Causal decoder 175B Pre LayerNorm Learned ReLU X 96 96 12288 2048
PaLM [56] Causal decoder 540B Pre LayerNorm RoPE SwiGLU ⇥ 118 48 18432 2048
BLOOM [69] Causal decoder 176B Pre LayerNorm ALiBi GeLU X 70 112 14336 2048
MT-NLG [97] Causal decoder 530B - - - - 105 128 20480 2048
Gopher [59] Causal decoder 280B Pre RMSNorm Relative - - 80 128 16384 2048
Chinchilla [34] Causal decoder 70B Pre RMSNorm Relative - - 80 64 8192 -
Galactica [35] Causal decoder 120B Pre LayerNorm Learned GeLU ⇥ 96 80 10240 2048
LaMDA [63] Causal decoder 137B - Relative GeGLU - 64 128 8192 -
Jurassic-1 [91] Causal decoder 178B Pre LayerNorm Learned GeLU X 76 96 13824 2048
LLaMA [57] Causal decoder 65B Pre RMSNorm RoPE SwiGLU X 80 64 8192 2048
GLM-130B [83] Prefix decoder 130B Post DeepNorm RoPE GeGLU X 70 96 12288 2048
T5 [73] Encoder-decoder 11B Pre RMSNorm Relative ReLU ⇥ 24 128 1024 512

De
co
de

r

Encoder Decoder

Causal Decoder Prefix Decoder Encoder-Decoder

Language ModelsA Survey of Large Language ModelsA Survey of Large Language ModelsA Survey of Large

La
ng
ua
ge

M
od

el
s

A
Su
rv
ey

of
La
rg
e

La
ng
ua
ge

M
od

el
s

A
Su
rv
ey

of
La
rg
e

La
ng
ua
ge

M
od

el
s

A
Su
rv
ey

of
La
rg
e

En
co
de

r
De

co
de

rDe
co
de

r

Decoder Decoder

Fig. 7: A comparison of the attention patterns in three mainstream architectures. Here, the blue, green, yellow and grey
rounded rectangles indicate the attention between prefix tokens, attention between prefix and target tokens, attention
between target tokens, and masked attention respectively.

models to hundreds or thousands of billions of parameters.
In general, the mainstream architectures of existing LLMs
can be roughly categorized into three major types, namely
encoder-decoder, causal decoder, and prefix decoder, as
shown in Figure 7.

Encoder-decoder Architecture. The vanilla Transformer
model is built on the encoder-decoder architecture [22],
which consists of two stacks of Transformer blocks as
the encoder and decoder, respectively. The encoder adopts
stacked multi-head self-attention layers to encode the input
sequence for generating its latent representations, while
the decoder performs cross-attention on these representa-
tions and autoregressively generates the target sequence.
Encoder-decoder PLMs (e.g., T5 [73] and BART [24]) have
shown effectiveness on a variety of NLP tasks. So far,
there are only a small number of LLMs that are built based
on the encoder-decoder architecture, e.g., Flan-T5 [64]. We
leave a detailed discussion about the architecture selection
in Section 4.2.4.

Causal Decoder Architecture. The causal decoder archi-

tecture incorporates the unidirectional attention mask, to
guarantee that each input token can only attend to the
past tokens and itself. The input and output tokens are
processed in the same fashion through the decoder. As
representative language models of this architecture, the
GPT-series models [26, 55, 105] are developed based on
the causal-decoder architecture. In particular, GPT-3 [55]
has successfully demonstrated the effectiveness of this ar-
chitecture, also showing an amazing in-context learning
capability of LLMs. Interestingly, GPT-1 [105] and GPT-
2 [26] do not exhibit such superior abilities as those in
GPT-3, and it seems that scaling plays an important role
in increasing the model capacity of this model architecture.
So far, the causal decoders have been widely adopted as
the architecture of LLMs by various existing LLMs, such
as OPT [81], BLOOM [69], and Gopher [59]. Note that both
the causal decoder and prefix decoder discussed next belong
to decoder-only architectures. When mentioning “decoder-
only architecture”, it mainly refers to the causal decoder
architecture in existing literature, unless specified.

Prefix Decoder Architecture. The prefix decoder architec-

Fig. 1.5: A comparison of the attention patterns in three mainstream architectures.

Silin Du (MS&E) LLMs and RS September 22, 2023 16 / 117

Pre-training Tasks

I Language Modeling.
Given a sequence of tokens x = {x1, ..., xn}, the LM task aims to autoregressively predict the
target tokens xi based on the preceding tokens x<i in a sequence.

LLM(x) =
n

∑
i=1

log P(xi | x<i)

I Denoising Autoencoding.
The inputs x\x̃ for DAE task are corrupted text with randomly replaced spans. Then, the lan-
guage models are trained to recover the replaced tokens x̃.

LDAE(x) = log P(x̃ | x\x̃)

I Mixture-of-Denoisers. (MoD)
MoD regards both LM and DAE objectives as different types of denoising tasks, namely S-
denoiser (LM), R-denoiser (DAE, short span and low corruption), and X-denoiser (DAE, long
span or high corruption).

Silin Du (MS&E) LLMs and RS September 22, 2023 17 / 117

Contents

Large Language Model
Key Concepts and Recent Developments
Pre-training
Instruction Tuning
Alignment Tuning
Parameter-efficient and Memory-efficient
Model Adaptation
In-context Learning and Chain-of-thought
Prompting

Planning for Complex Task Solving
Capacity Evaluation
LLMs for Recommendations
LLMs for Recommendations
Generative Recommendation with LLMs
TALLRec
ChatGPT for Recommendations
LLM for Job Recommendation
RecruitPro
Generative Job Recommendations

Formatted Instance Construction I

In order to perform instruction tuning, we need to

1. collect or construct instruction-formatted instances

2. employ these formatted instances to fine-tune LLMs in a supervised learning way (e.g., training
with the sequence-to-sequence loss).

Three major methods for constructing formatted instances.

1. Task Datasets. Collect the instances form a diverse range of tasks (e.g., text summarization,
translation).

2. Daily Chat Data. InstructGPT proposes to take the queries that real users have submitted to the
OpenAI API as the task descriptions. Labelers directly answer these instructions as the output.

3. Synthetic Data. Feed existing instances into LLMs to synthesize diverse task descriptions and
instances.

Silin Du (MS&E) LLMs and RS September 22, 2023 18 / 117

Formatted Instance Construction II

24

(a) Formatting Task Datasets (b) Formatting Daily Chat Data

Human-written
API collection

&

NLP Datasets

Human-written

Please answer this question:

Task description

Q: What is the capital of France?
A: Paris.

Q: What is the capital of Brazil?
A: Brasilia

Demonstrations

Q: What is the capital of China?
A: Beijing.

OutputInput

Desired output written by human

Here are some ways to lose weight:
1. Eat a healthy diet: Focus on …
2. Increase physical activity: Engage …

Output

Can you recommend some ways
to lose weight?

Task description

LLM

Give me a quote from a
famous person on this topic.

Task description

Instruction
Generation

LLM

Input-Output
Generation

Input: The importance of being honest.
Output: Honesty is the first chapter in
the book of wisdom.

OutputInput

Instance Pool

Filter

(c) Formatting Synthetic Data

Seed
Instances

Fig. 8: An illustration of instance formatting and three different methods for constructing the instruction-formatted
instances.

Figure 8) and then discuss several key factors for instance
construction.

Formatting Task Datasets. Before instruction tuning was
proposed, several early studies [242, 249, 250] collected the
instances from a diverse range of tasks (e.g., text summariza-
tion, text classification, and translation) to create supervised
multi-task training datasets. As a major source of instruction
tuning instances, it is convenient to format these multi-task
training datasets with natural language task descriptions.
Specifically, recent work [28, 61, 62, 79] augments the la-
beled datasets with human-written task descriptions, which
instructs LLMs to understand the tasks by explaining the
task goal. For example, in Figure 8(a), a task description
“Please answer this question” is added for each example in
the question-answering task. After instruction tuning, LLMs
can generalize well to other unseen tasks by following their
task descriptions [28, 62, 64]. In particular, it has been shown
that instructions are the crucial factor in task generalization
ability for LLMs [62]: by fine-tuning the model on labeled
datasets with the task descriptions removed, it results in
a dramatic drop in model performance. To better generate
labeled instances for instruction tuning, a crowd-sourcing
platform, PromptSource [241] has been proposed to effec-
tively create, share, and verify the task descriptions for
different datasets. To enrich the training instances, several
studies [28, 242, 251] also try to invert the input-output pairs
of existing instances with specially designed task descrip-
tions for instruction tuning. For instance, given a question-
answer pair, we can create a new instance by predicting the
question-conditioned answer (e.g., “Please generate a question
based on the answer:”).

Formatting Daily Chat Data. Despite that a large number
of training instances have been formatted with instructions,
they mainly come from public NLP datasets, either lack-
ing instruction diversity or mismatching with real human
needs [61]. To overcome this issue, InstructGPT [61] pro-
poses to take the queries that real users have submitted

to the OpenAI API as the task descriptions. User queries
are expressed in natural languages, which are particularly
suitable for eliciting the ability of instruction following for
LLMs. Additionally, to enrich the task diversity, human
labelers are also asked to compose the instructions for real-
life tasks, including open-ended generation, open question
answering, brainstorming, and chatting. Then, they let an-
other group of labelers directly answer these instructions
as the output. Finally, they pair one instruction (i.e., the
collected user query) and the expected output (i.e., the
human-written answer) as a training instance. Note that
InstructGPT also employs these real-world tasks format-
ted in natural language for alignment tuning (discussed
in Section 5.2). Further, GPT-4 [46] has designed poten-
tially high-risk instructions and guided the model to reject
these instructions through supervised fine-tuning for safety
concerns. Recently, researchers also collect the users’ chat
requests as the input data and employ ChatGPT or GPT-4
to respond to these requests as the output data. A represen-
tative collection of such dataset is the conversational data
from ShareGPT.

Formatting Synthetic Data. To reduce the burden of human
annotation or manual collection, several semi-automated
approaches [125] have been proposed for constructing in-
stances by feeding existing instances into LLMs to synthe-
size diverse task descriptions and instances. As illustrated
in Figure 8(c), the Self-Instruct method only needs around
100 instances as the initial task pool. Then, they randomly
select a few instances from the pool as demonstrations and
prompt a LLM to generate new instructions and corre-
sponding input-output pairs. After the quality and diversity
filtering, newly generated instances would be added into
the task pool. Hence, the synthetic method is an effective
and economical way to generate large-scale instruction data
for LLMs.

Key Factors for Instance Construction. The quality of
instruction instances has an important impact on the perfor-

Fig. 1.6: Three different methods for constructing the instruction-formatted instances.

Key Factors for Instance Construction
I Scaling the instructions. It has been widely shown that scaling the number of tasks can largely

enhance the generalization ability of LLMs.
I Formatting design. The task description is the most key part for LLMs to understand the task.

Further, it can lead to substantial improvements by using an appropriate number of exemplars
as demonstrations.

To summarize, it seems that the diversity and quality of instructions is more important than the num-
ber of instances.

Silin Du (MS&E) LLMs and RS September 22, 2023 19 / 117

Effects of Instruction Tuning

I Peformance Improvement. Instruction tuning has become an important way to improve or unlock
the abilities of LLMs [4].

I Task Generalization. It endows LLMs with the ability (often considered as an emergent ability) to
follow human instructions to perform specific tasks without demonstrations, even on unseen
tasks.

I Domain Specialization. Instruction tuning is an effective approach to adapting existing gen-
eral LLMs to be domain-specific experts. For instance, researchers propose to fine-tune Flan-
PaLM [4] using medical datasets to create Med-PaLM [37], a medical knowledge assistant that
achieves performance levels comparable to those of expert clinicians.

Silin Du (MS&E) LLMs and RS September 22, 2023 20 / 117

Device Requirements of Instruction Tuning

26

TABLE 7: Basic statistics of the required number of GPUs, tuning time, batch size (denoted as BS) per device (full tuning
and LoRA tuning), and inference rate (the number of generated tokes per second). Our experiments are conducted based
on two Linux servers having 8 A800-80G GPUs and 8 3090-24G GPUs, respectively. The major difference between A800
and A100 lies in the NVLink interconnect speed. Thus, our estimations about training and inference efficiency would be
slightly improved for A100, while the rest memory consumption would remain the same. The full tuning experiments are
conducted using data parallel training, ZeRO Stage 3, BF16, and gradient checkpointing. Additionally, the LoRA tuning
can be executed on one 80G GPU utilizing INT8 quantization with the rank setting set to 16. The max sequence length for
both training settings is set to 512. The inference experiments are performed with the batch size set to 1.

Models A800 Full Training A800 LoRA Training A800 Inference (16-bit) 3090 Inference (16-bit) 3090 Inference (8-bit)
#GPU BS Time #GPU BS Time #GPU #Token/s #GPU #Token/s #GPU #Token/s

LLaMA-7B 2 8 3.0h 1 80 3.5h 1 36.6 1 24.3 1 7.5
LLaMA-13B 4 8 3.1h 1 48 5.1h 1 26.8 2 9.9 1 4.5
LLaMA-30B 8 4 6.1h 1 24 14.3h 1 17.7 4 3.8 2 2.6
LLaMA-65B 16 2 11.2h 1 4 60.6h 2 8.8 8 2.0 4 1.5

Task Generalization. Instruction tuning encourages the
model to understand natural language instructions for task
completion. It endows LLMs with the ability (often con-
sidered as an emergent ability) to follow human instruc-
tions [31] to perform specific tasks without demonstrations,
even on unseen tasks [64]. A large number of studies
have confirmed the effectiveness of instruction tuning to
achieve superior performance on both seen and unseen
tasks [85, 251]. Also, instruction tuning has been shown to
be useful in alleviating several weaknesses of LLMs (e.g.,
repetitive generation or complementing the input without
accomplishing a certain task) [61, 64], leading to a superior
capacity to solve real-world tasks for LLMs. Furthermore,
LLMs trained with instruction tuning can generalize to re-
lated tasks across languages. For example, BLOOMZ-P3 [84]
is fine-tuned based on BLOOM [69] using English-only task
collection P3 [241]. Interestingly, BLOOMZ-P3 can achieve
a more than 50% improvement in multilingual sentence
completion tasks compared to BLOOM, which shows that
instruction tuning can help LLMs acquire general task skills
from English-only datasets and transfer such skills into
other languages [84]. In addition, it has been found that
using English-only instructions can produce satisfactory
results on multilingual tasks [84], which helps reduce the
effort of instruction engineering for a specific language.

Domain Specialization. Existing LLMs have showcased su-
perior capabilities in traditional NLP tasks (e.g., generation
and reasoning) and daily questions. However, they may
still lack domain knowledge to accomplish specific tasks,
such as medicine, law, and finance (See Section 9 for a
detailed discussion of LLMs in different applications). In-
struction tuning is an effective approach to adapting existing
general LLMs to be domain-specific experts. For instance,
researchers propose to fine-tune Flan-PaLM [64] using medi-
cal datasets to create Med-PaLM [254], a medical knowledge
assistant that achieves performance levels comparable to
those of expert clinicians. Furthermore, a recent study [255]
fine-tunes FLAN-T5 to support e-commerce recommender
systems with natural language instructions, showing strong
performance in a variety of recommendation tasks. There
are also several open-sourced medical models instruction-
tuned based on LLaMA [57], such as BenTsao [256]. Also,
researchers explore instruction tuning on law [257], fi-
nance [258], and arithmetic computation [259].

5.1.4 Empirical Analysis for Instruction Tuning

Fine-tuning LLMs with different instruction sets tend to lead
to model variants with varied performance on downstream
tasks. In this section, we will explore the effect of different
types of instructions in fine-tuning LLMs (i.e., 7B LLaMA26),
as well as examine the usefulness of several instruction
improvement strategies.

Instruction Datasets. According to the discussion in Sec-
tion 5.1.1, we mainly consider three common kinds of in-
structions as follows:

• Task-specific instructions. For the first type of instruc-
tions, we adopt the most commonly-used multi-task instruc-
tion dataset, FLAN-T5 [64], which contains 1,836 tasks and
over 15M instructions by combining four data mixtures from
prior work.

• Daily chat instructions. This type of instructions are con-
versations posed by users about daily life, which are more
closely related to real-life scenarios. We adopt the ShareGPT
instruciton set27, consisting of 63K real-user instructions. It
has been used as the core instructions for Vicuna.

• Synthetic instructions. In addition to reusing existing
instructions, we can also automatically synthesize massive
instructions using LLMs. We adopt the popular synthetic
instruction dataset Self-Instruct-52K [125], consisting of 52K
instructions paired with about 82K instance inputs and
outputs. These generated instructions have a similar data
distribution as the human-written seed tasks (e.g., grammar
checking, brainstorming).

As the original FLAN-T5 dataset is very large (i.e., over
15M), we randomly sample 80,000 instructions from it for
conducting a fair comparison with other instruction datasets
(i.e., ShareGPT and Self-Instruct-52K) at a similar scale. In
our experiments, we test on each individual instruction
set to explore their own effects and also examine their
combinatorial effects on model performance.

Improvement Strategies. Although real-world instructions
from human users are more suitable for fine-tuning LLMs,
it is difficult to collect them at a large scale. As alternatives
to human-generated instructions, most existing research

26. Due to the limit of computational resources, we cannot conduct
large-scale experiments on 10B+ LLaMA variants right now, which
would be scheduled in a future version.

27. https://github.com/domeccleston/sharegpt

Fig. 1.7: Basic statistics of the required number of GPUs, tuning time, batch size (denoted as BS) per device (full
tuning and LoRA tuning), and inference rate (the number of generated tokes per second).

Silin Du (MS&E) LLMs and RS September 22, 2023 21 / 117

Contents

Large Language Model
Key Concepts and Recent Developments
Pre-training
Instruction Tuning
Alignment Tuning
Parameter-efficient and Memory-efficient
Model Adaptation
In-context Learning and Chain-of-thought
Prompting

Planning for Complex Task Solving
Capacity Evaluation
LLMs for Recommendations
LLMs for Recommendations
Generative Recommendation with LLMs
TALLRec
ChatGPT for Recommendations
LLM for Job Recommendation
RecruitPro
Generative Job Recommendations

Background and Criteria for Alignment

I LLMs may sometimes exhibit unintended behaviors, e.g., fabricating false information, pursu-
ing inaccurate objectives, and producing harmful, misleading, and biased expressions.

I It has been shown that alignment might harm the general abilities of LLMs to some extent,
which is called alignment tax in related literature.

Alignment Criteria

I Helpfulness. To be helpful, the LLM should demonstrate a clear attempt to assist users in solving
their tasks or answering questions in a concise and efficient manner as possible.

I Honesty. A LLM aligned to be honest should present accurate content to users instead of fab-
ricating information. Additionally, it is crucial for the LLM to convey appropriate degrees of
uncertainty in its output.

I Harmlessness. It requires that the language produced by the model should not be offensive or
discriminatory.

Silin Du (MS&E) LLMs and RS September 22, 2023 22 / 117

Collecting Human Feedback

I Human Labeler Selection.
Researchers first label a small amount of data and then measure the agreement between them-
selves and human labelers. The labelers with the highest agreement will be selected to proceed
with the subsequent annotation work.

I Human Feedback Collection.
I Ranking-based approach. Human labelers often evaluate model-generated outputs in a coarse-grained

manner (i.e., only selecting the best) without taking into account more fine-grained alignment criteria.
I Question-based approach. Human labelers can provide more detailed feedback by answering certain

questions designed by researchers, covering the alignment criteria as well as additional constraints for
LLMs.

I Rule-based approach. Many studies also develop rule-based methods to provide more detailed human
feedback.

Silin Du (MS&E) LLMs and RS September 22, 2023 23 / 117

Reinforcement Learning from Human Feedback I

Reinforcement learning from human feedback (RLHF) has been widely used for alignment tuning in
recent powerful LLMs, such as ChatGPT. The RLHF system mainly comprises

1. a pre-trained LM to be aligned
The pre-trained LM is typically a generative model that is initialized with existing pretrained
LM parameters. For example, OpenAI uses 175B GPT-3.

2. a reward model (RM) learning from human feedback
The RM provides (learned) guidance signals that reflect human preferences for the text gener-
ated by the LM, usually in the form of a scalar value. Existing work typically employs reward
models having a parameter scale different from that of the aligned LM. For example, OpenAI uses 6B
GPT-3 as the reward model.

3. a RL algorithm training the LM
Proximal Policy Optimization (PPO) is widely used.

Silin Du (MS&E) LLMs and RS September 22, 2023 24 / 117

Reinforcement Learning from Human Feedback II

Key Steps for RLHF.

I Supervised fine-tuning. To make the LM initially perform desired behaviors, it usually needs
to collect a supervised dataset containing input prompts (instruction) and desired outputs for
fine-tuning the LM.

I Reward model training. We employ the LM to generate a certain number of output texts using
sampled prompts (from either the supervised dataset or the human-generated prompt) as input.
We then invite human labelers to annotate the preference for these pairs. Then, the RM is trained
to predict the human-preferred output.

I RL fine-tuning. The pre-trained LM acts as the policy that takes as input a prompt and returns
an output text, the action space of it is the vocabulary, the state is the currently generated token
sequence, and the reward is provided by the RM.

Silin Du (MS&E) LLMs and RS September 22, 2023 25 / 117

30

Human
Annotator

Demonstration Data

Supervised Fine-tuning

Reward Model Training

RL Fine-tuning

Prompts

LM Outputs Training with RL algorithm (PPO)

Ranking Training with feedback data

Training with demonstration data

Pre-trained LM

Pre-trained LM

Aligned LM

Reward
/

 Reward
Model

 Reward
Model

Demonstrations

Prompts

LM Outputs Prompts

Human Feedback

Fig. 9: The workflow of the RLHF algorithm.

to what extent the generated output has violated the rules).
Furthermore, GPT-4 [46] utilizes a set of zero-shot classifiers
(based on GPT-4 itself) as rule-based reward models, which
can automatically determine whether the model-generated
outputs violate a set of human-written rules.

In the following, we focus on a well-known technique,
reinforcement learning from human feedback (RLHF),
which has been widely used in the recent powerful LLMs
such as ChatGPT. As discussed below, the alignment criteria
introduced in Section 5.2.1 can be fulfilled by learning from
human feedback on the responses of LLMs to users’ queries.

5.2.3 Reinforcement Learning from Human Feedback

To align LLMs with human values, reinforcement learning
from human feedback (RLHF) [70, 267] has been proposed
to fine-tune LLMs with the collected human feedback data,
which is useful to improve the alignment criteria (e.g.,
helpfulness, honesty, and harmlessness). RLHF employs
reinforcement learning (RL) algorithms (e.g., Proximal Pol-
icy Optimization (PPO) [111]) to adapt LLMs to human
feedback by learning a reward model. Such an approach
incorporates humans in the training loop for developing
well-aligned LLMs, as exemplified by InstructGPT [61].

RLHF System. The RLHF system mainly comprises three
key components: a pre-trained LM to be aligned, a reward
model learning from human feedback, and a RL algorithm
training the LM. Specifically, the pre-trained LM is typically
a generative model that is initialized with existing pre-
trained LM parameters. For example, OpenAI uses 175B
GPT-3 for its first popular RLHF model, InstructGPT [61],
and DeepMind uses the 280 billion parameter model Go-
pher [59] for its GopherCite model [270]. Further, the reward
model (RM) provides (learned) guidance signals that reflect
human preferences for the text generated by the LM, usually
in the form of a scalar value. The reward model can take on
two forms: a fine-tuned LM or a LM trained de novo using

human preference data. Existing work typically employs
reward models having a parameter scale different from that
of the aligned LM [61, 270]. For example, OpenAI uses 6B
GPT-3 and DeepMind uses 7B Gopher as the reward model,
respectively. Finally, to optimize the pre-trained LM using
the signal from the reward model, a specific RL algorithm
is designed for large-scale model tuning. Specifically, Prox-
imal Policy Optimization (PPO) [111] is a widely used RL
algorithm for alignment in existing work [61, 100, 270].

Key Steps for RLHF. Figure 9 illustrates the overall three-
step process of RLHF [61] as introduced below.

• Supervised fine-tuning. To make the LM initially perform
desired behaviors, it usually needs to collect a supervised
dataset containing input prompts (instruction) and desired
outputs for fine-tuning the LM. These prompts and outputs
can be written by human labelers for some specific tasks
while ensuring the diversity of tasks. For example, Instruct-
GPT [61] asks human labelers to compose prompts (e.g.,
“List five ideas for how to regain enthusiasm for my career”) and
desired outputs for several generative tasks such as open
QA, brainstorming, chatting, and rewriting. Note that the
first step is optional in specific settings or scenarios.

• Reward model training. The second step is to train the
RM using human feedback data. Specifically, we employ
the LM to generate a certain number of output texts using
sampled prompts (from either the supervised dataset or
the human-generated prompt) as input. We then invite
human labelers to annotate the preference for these pairs.
The annotation process can be conducted in multiple forms,
and a common approach is to annotate by ranking the
generated candidate texts, which can reduce the inconsis-
tency among annotators. Then, the RM is trained to predict
the human-preferred output. In InstructGPT, labelers rank
model-generated outputs from best to worst, and the RM
(i.e., 6B GPT-3) is trained to predict the ranking.

• RL fine-tuning. At this step, aligning (i.e., fine-tuning)
the LM is formalized as an RL problem. In this setting,
the pre-trained LM acts as the policy that takes as input
a prompt and returns an output text, the action space of
it is the vocabulary, the state is the currently generated
token sequence, and the reward is provided by the RM. To
avoid eviating significantly from the initial (before tuning)
LM, a penalty term is commonly incorporated into the
reward function. For example, InstructGPT optimizes the
LM against the RM using the PPO algorithm. For each input
prompt, InstructGPT calculates the KL divergence between
the generated results from the current LM and the initial
LM as the penalty. It is noted that the second and final steps
can be iterated in multiple turns for better aligning LLMs.
Due to the instability of the RL algorithm, recent work [271]
replaces the RL tuning with another supervised fine-tuning
by reusing the best ranked samples with higher rewards.

5.3 Parameter-Efficient Model Adaptation
In the above, we have discussed the approaches of instruc-
tion tuning and alignment tuning to adapt LLMs according
to specific goals. Since LLMs consist of a huge amount of
model parameters, it would be costly to perform the full-
parameter tuning. In this section, we will discuss how to
conduct efficient tuning on LLMs. We first review several

Fig. 1.8: The workflow of the RLHF algorithm.

Contents

Large Language Model
Key Concepts and Recent Developments
Pre-training
Instruction Tuning
Alignment Tuning
Parameter-efficient and Memory-efficient
Model Adaptation
In-context Learning and Chain-of-thought
Prompting

Planning for Complex Task Solving
Capacity Evaluation
LLMs for Recommendations
LLMs for Recommendations
Generative Recommendation with LLMs
TALLRec
ChatGPT for Recommendations
LLM for Job Recommendation
RecruitPro
Generative Job Recommendations

Parameter-efficient Fine-tuning I

Parameter-efficient fine-tuning (PEFT) aims to reduce the number of trainable parameters while re-
taining a good performance as possible.

31

Layer #1

Prompt Input

Layer #N

…

(c) Prompt Tuning

Input

AdapterAdapterMHA FFN

AdapterAdapterMHA FFN
…

(a) Adapter Tuning

Layer #1

Prefix

Input

Layer #N

Prefix

…

(b) Prefix Tuning

Layer #1

Input

Layer #N

…

(d) Low-Rank Adapation

Wdown

Wdown

LoRA

Fig. 10: An illustration of four different parameter-efficient fine-tuning methods. MHA and FFN denote the multi-head
attention and feed-forward networks in the Transformer layer, respectively.

representative parameter-efficient fine-tuning methods for
Transformer language models, and then summarize existing
work on parameter-efficient fine-tuned LLMs.

5.3.1 Parameter-Efficient Fine-Tuning Methods
In existing literature, parameter-efficient fine-tuning [127,
272, 273] has been an important topic that aims to reduce
the number of trainable parameters while retaining a good
performance as possible. In what follows, we briefly re-
view four parameter-efficient fine-tuning methods for Trans-
former language models, including adapter tuning, prefix
tuning, prompt tuning and LoRA. The illustration of these
four methods are shown in Figure 12.

Adapter Tuning. Adapter tuning incorporates small neural
network modules (called adapter) into the Transformer mod-
els [274]. To implement the adapter module, a bottleneck
architecture has been proposed in [274, 275], which first
compresses the original feature vector into a smaller di-
mension (followed by a nonlinear transformation) and then
recovers it to the original dimension. The adapter modules
would be integrated into each Transformer layer, typically
using a serial insertion after each of the two core parts (i.e.,
attention layer and feed-forward layer) of a Transformer
layer. Alternatively, parallel adapters [276] can be also used
in Transformer layers, where it places two adapter modules
in parallel with the attention layer and feed-forward layer
accordingly. During fine-tuning, the adapter modules would
be optimized according to the specific task goals, while the
parameters of the original language model are frozen in this
process. In this way, we can effectively reduce the number
of trainable parameters during fine-tuning.

Prefix Tuning. Prefix tuning [272] prepends a sequence of
prefixes, which are a set of trainable continuous vectors, to
each Transformer layer in language models. These prefix
vectors are task-specific, which can be considered as virtual
token embeddings. To optimize the prefix vectors, a repa-
rameterization trick [272] has been proposed by learning a
MLP function that maps a smaller matrix to the parameter
matrix of prefixes, instead of directly optimizing the pre-
fixes. It has been shown that this trick is useful for stable
training. After optimization, the mapping function would
be discarded, and only the derived prefix vectors are kept
to enhance task-specific performance. Since only the prefix
parameters would be trained, it can lead to a parameter-
efficient model optimization. Similar to prefix tuning, p-
tuning v2 [277] incorporates layer-wise prompt vectors into

the Transformer architecture specially for natural language
understanding, which also utilizes multi-task learning for
jointly optimizing shared prompts. It has been shown to
be useful in improving the model performance of different
parameter scales on natural language understanding tasks.

Prompt Tuning. Different from prefix tuning, prompt tun-
ing [273, 278] mainly focuses on incorporating trainable
prompt vectors at the input layer30. Based on the discrete
prompting methods [280, 281], it augments the input text
by including a group of soft prompt tokens (either in a
free form [278] or a prefix form [273]), and then takes
the prompt-augmented input to solve specific downstream
tasks. In implementation, task-specific prompt embeddings
are combined with the input text embeddings, which are
subsequently fed into language models. P-tuning [278] has
proposed a free form to combine the context, prompt and
target tokens, which can be applied to the architectures for
both natural language understanding and generation. They
further learn the representations of soft prompt tokens by a
bidirectional LSTM. Another representative approach [273]
named prompt tuning directly prepends prefix prompts to
the input. During training, only the prompt embeddings
would be learned according to task-specific supervisions.
Since this method only includes a small number of trainable
parameters at the input layer, it has been found that the
performance highly relies on the model capacity of the
underlying language models [273].

Low-Rank Adaptation (LoRA). LoRA [127] imposes the
low-rank constraint for approximating the update matrix at
each dense layer, so as to reduce the trainable parameters
for adapting to downstream tasks. Consider the case of
optimizing a parameter matrix W. The update process can
be written in a general form as: W W + �W. The basic
idea of LoRA is to freeze the original matrix W 2 Rm⇥n

while approximating the parameter update �W by low-
rank decomposition matrices, i.e., �W = A · B>, where
A 2 Rm⇥k and B 2 Rn⇥k are the trainable parameters for
task adaptation and k ⌧ min(m, n) is the reduced rank. The

30. Here, prompt tuning denotes a category of related efficient tuning
methods exemplified by the work [273, 278, 279], instead of a spe-
cific method as used in [273]. Indeed, the prefix based tuning meth-
ods [272, 277] can be also considered as prompting methods, which
are called deep prompting tuning in [277]. In this survey, prompt tuning
specially refer to the methods that only include the prompt tokens at
the input layer, in the context of LLMs. We assign p-tuning v2 [277] to
the category of prefix tuning, because it incorporates layerwise prompts
in langauge models.

Fig. 1.9: Four different parameter-efficient fine-tuning methods.

Silin Du (MS&E) LLMs and RS September 22, 2023 27 / 117

Parameter-efficient Fine-tuning II

I Adapter tuning incorporates small neural network modules (called adapter) into the Transformer
models [17]. During fine-tuning, the adapter modules would be optimized according to the
specific task goals, while the parameters of the original language model are frozen.

I Prefix tuning [24] prepends a sequence of prefixes, which are a set of trainable continuous vec-
tors, to each Transformer layer in language models. During fine-tuning, only the prefix param-
eters would be trained.

I Prompt tuning [22] mainly focuses on incorporating trainable prompt vectors at the input layer.

Silin Du (MS&E) LLMs and RS September 22, 2023 28 / 117

Parameter-efficient Fine-tuning III

I Low-Rank Adaptation (LoRA) [18] imposes the low-rank constraint for approximating the update
matrix at each dense layer, so as to reduce the trainable parameters for adapting to downstream
tasks.
Consider the case of optimizing a parameter matrix W as follows

W← W + ∆W

LoRA freeze the original matrix W ∈ Rm×n amd approximate the parameter update ∆W by

∆W = A · B>

where A ∈ Rm×k, B ∈ Rn×k and k� min(m, n).

LoRA has been widely applied to open-source LLMs (e.g., LLaMA)

Silin Du (MS&E) LLMs and RS September 22, 2023 29 / 117

Memory-efficient Model Adaptation

We can reduce the memory footprint of LLMs via model quantization so that large-sized LLMs can be
used in resource-limited settings.

I Quantization often refers to the mapping process from floating-point numbers to integers [15],
especially the 8-bit integer quantization (i.e., INT8 quantization).

xq = R(x/S)− Z

which transforms a floating number x into a quantized value xq. S and Z denote the scaling
factor and zero-point factor (determining symmetric or asymmetric quantization), and R(·) de-
notes the rounding operation.

Silin Du (MS&E) LLMs and RS September 22, 2023 30 / 117

Quantization Methods for LLMs I

Quantization-aware training (QAT) (requiring additional full model retraining)
Post-training quantization (PTQ) (requires no model retraining)

I Mixed-precision decomposition. Recover the outlier in a high precision.

I Fine-grained quantization. Apply different quantization approach for activations and weights.

I Balancing the quantization difficulty. Migrate the difficulty from activations to weights.

I Layer-wise quantization. Find optimal quantized weights that minimize a layer-wise reconstruc-
tion loss.

Empirical Findings.

I INT8 weight quantization can often yield very good results on LLMs, while the performance of
lower precision weight quantization depends on specific methods.

I Activations are more difficult to be quantized than weights.

Silin Du (MS&E) LLMs and RS September 22, 2023 31 / 117

Quantization Methods for LLMs II

I Efficient fine-tuning enhanced quantization is a good option to enhance the performance of
quantized LLMs.
QLoRA [7] incorporates additional small tunable adapters (16-bit precision) into the quantized
models, to achieve an efficient, high-precision model fine-tuning.

Silin Du (MS&E) LLMs and RS September 22, 2023 32 / 117

Contents

Large Language Model
Key Concepts and Recent Developments
Pre-training
Instruction Tuning
Alignment Tuning
Parameter-efficient and Memory-efficient
Model Adaptation
In-context Learning and Chain-of-thought
Prompting

Planning for Complex Task Solving
Capacity Evaluation
LLMs for Recommendations
LLMs for Recommendations
Generative Recommendation with LLMs
TALLRec
ChatGPT for Recommendations
LLM for Job Recommendation
RecruitPro
Generative Job Recommendations

In-context Learning I

As a special prompting form, in-context learning (ICL) is first proposed along with GPT-3 [2], which
has become a typical approach to utilizing LLMs.
ICL uses a formatted natural language prompt, consisting of the task description and/or a few task
examples as demonstrations.

I Let Dk = { f (x1, y1), ..., f (xk, yk)} represent a set of demonstrations with k examples, where
f (xk, yk) is the prompt function that transforms the k-th task example into natural language
prompts.

I Given the task description I, demonstration Dk, and a new input query xk+1, the prediction of
the output ŷk+1 is

LLM(I, f (x1, y1) , . . . , f (xk, yk)︸ ︷︷ ︸
demonstrations

, f (xk+1︸︷︷︸
input

, ___︸︷︷︸
answer

))→ ŷk+1

Silin Du (MS&E) LLMs and RS September 22, 2023 33 / 117

In-context Learning II

35

Answer the following mathematical reasoning questions:

Q: Sam has 12 marbles. He gives 1/4 of them to his sister.
How many marbles does Sam have left?

N x

If a rectangle has a length of 6 cm and a width of 3 cm,
what is the perimeter of the rectangle?

For a rectangle, add up the length and width and double it.
So, the perimeter of this rectangle is (6 + 3) x 2 = 18 cm.

The answer is 18 cm.

Q:

A:

LLMA: The answer is 9.
A: He gives (1 / 4) x 12 = 3 marbles.
So Sam is left with 12 – 3 = 9 marbles.
The answer is 9.

: Chain-of-Thought: Task description : Demonstration : Query

In-Context Learning Chain-of-Thought Prompting

Q:

A:

Q:

A:

Answer the following mathematical reasoning questions:

Q: Sam has 12 marbles. He gives 1/4 of them to his sister.
How many marbles does Sam have left?

N x The answer is 8.
If a rectangle has a length of 6 cm and a width of 3 cm,
what is the perimeter of the rectangle?
The answer is 18 cm.

If you have 12 candies and you give 4 candies to your friend,
how many candies do you have left?

Fig. 11: A comparative illustration of in-context learning (ICL) and chain-of-thought (CoT) prompting. ICL prompts LLMs
with a natural language description, several demonstrations, and a test query, while CoT prompting involves a series of
intermediate reasoning steps in prompts.

prediction of the output ŷk+1 generated from LLMs can be
formulated as follows38:

LLM
�
I, f(x1, y1), . . . , f(xk, yk)| {z }

demonstrations

, f(xk+1| {z }
input

, |{z}
answer

)
�
! ŷk+1.

(6)
where the actual answer yk+1 is left as a blank to be
predicted by the LLM. Since the performance of ICL heavily
relies on demonstrations, it is important to properly design
them in the prompts. According to the construction process
in Equation (6), we focus on three major aspects of for-
matting demonstrations in the prompts, including how to
select examples that make up demonstrations, format each
example into the prompt with the function f(·), and arrange
demonstrations in a reasonable order.

A comprehensive review of ICL has been presented in
the survey paper [50], and we suggest the readers refer-
ring to it for a more general, detailed discussion on this
topic. Compared with this survey, we specially focus on the
discussion of applying ICL to LLMs in two major aspects,
i.e., demonstration design and the underlying mechanism
of ICL. Also, ICL has a close connection with instruction
tuning (discussed in Section 5.1) in that both utilize nat-
ural language to format the task or instances. However,
instruction tuning needs to fine-tune LLMs for adaptation,
while ICL only prompts LLMs for utilization. Furthermore,
instruction tuning can enhance the ICL ability of LLMs to
perform target tasks, especially in the zero-shot setting (only
using task descriptions) [64].

6.1.2 Demonstration Design
Several studies have shown that the effectiveness of ICL is

38. When ICL was introduced in the GPT-3’s paper [55], it was
originally defined to be a combination of the task description and
demonstration examples, wherein either component is dispensable.
Following this definition, when a LLM is required to solve an unseen
task by using only task descriptions, it can be also considered to
perform ICL for task solving, whereas the ICL ability can be enhanced
by instruction tuning.

highly affected by the design of demonstrations [304–306]
Following the discussion in Section 6.1.1, we will introduce
the demonstration design of ICL from three major aspects,
i.e., demonstration selection, format, and order.

Demonstration Selection. The performance of ICL tends
to have a large variance with different demonstration exam-
ples [307], so it is important to select a subset of examples
that can effectively leverage the ICL capability of LLMs.
There are two main demonstration selection approaches,
namely heuristic and LLM-based approaches:

• Heuristic approaches. Due to their simplicity and low
costs, existing work widely adopts heuristic methods to
select demonstrations. Several studies employ a k-NN based
retriever to select examples that are semantically relevant to
the query [307, 308]. However, they perform the selection
individually for each example, rather than evaluating the
example set as a whole. To resolve this issue, diversity-
based selection strategies are proposed to choose the most
representative set of examples for specific tasks [309, 310].
Furthermore, in [311], both relevance and diversity are taken
into consideration when selecting demonstrations.

• LLM-based approaches. Another line of work selects
demonstrations by making use of LLMs. For example, LLMs
can be utilized to directly measure the informativeness
of each example according to the performance gain after
adding the example [312]. In addition, EPR [313] proposes
a two-stage retrieval approach that first recalls similar ex-
amples with an unsupervised method (e.g., BM25) and then
ranks them using a dense retriever (trained with positive
and negative examples labeled by LLMs). As an alterna-
tive approach, the task of demonstration selection can be
formulated into a RL problem, where LLMs serve as the
reward function to provide feedback for training the policy
model [314]. Since LLMs perform well for text annota-
tion [315], some recent studies employ LLM itself as the
demonstration generator without human intervention [316].

To summarize, as discussed in [317], the selected demon-

Fig. 1.10: A comparative illustration of in-context learning (ICL) and chain-of-thought (CoT) prompting.

Silin Du (MS&E) LLMs and RS September 22, 2023 34 / 117

In-context Learning III

The performance of ICL heavily relies on demonstrations
I Demonstration Selection.

I Heuristic approaches. Several studies employ a k-NN based retriever to select examples that are seman-
tically relevant to the query.

I LLM-based approaches. LLMs can be utilized to directly measure the informativeness of each example
according to the performance gain after adding the example.

I Demonstration Format. A straightforward method is to instantiate a pre-defined template with
the corresponding input-output pairs.

I Demonstration Order. Demonstrations can be directly organized according to their similarity
to the query in the embedding space [27]: the more similar, the closer to the end.

Silin Du (MS&E) LLMs and RS September 22, 2023 35 / 117

Chain-of-thought Prompting

Chain-of-Thought (CoT) [41] is an improved prompting strategy to boost the performance of LLMs
on complex reasoning tasks, such as arithmetic reasoning. CoT incorporates intermediate reasoning
steps that can lead to the final output into the prompts.

I Few-shot CoT is a special case of ICL, which augments each demonstration by incorporating the
CoT reasoning steps.

I Zero-shot CoT does not include human-annotated task demonstrations in the prompts. Instead,
it directly generates reasoning steps and then employs the generated CoTs to derive the an-
swers.
Zero-shot CoT is first proposed in [21], where the LLM is first prompted by "Let’s think step by
step" to generate reasoning steps and then prompted by "Therefore, the answer is" to derive the
final answer.

Silin Du (MS&E) LLMs and RS September 22, 2023 36 / 117

Contents

Large Language Model
Key Concepts and Recent Developments
Pre-training
Instruction Tuning
Alignment Tuning
Parameter-efficient and Memory-efficient
Model Adaptation
In-context Learning and Chain-of-thought
Prompting

Planning for Complex Task Solving
Capacity Evaluation
LLMs for Recommendations
LLMs for Recommendations
Generative Recommendation with LLMs
TALLRec
ChatGPT for Recommendations
LLM for Job Recommendation
RecruitPro
Generative Job Recommendations

Overall Framework I

Prompt-based planning has been proposed to break down complex tasks into smaller subtasks and
generate a plan of actions to accomplish the task.

I Task planner, which is played by LLMs, aims to generate the whole plan to solve a target task.

I Plan executor is responsible for executing the actions in the plan. It can be implemented by
models like LLMs for textual tasks or by objects like robots for embodied tasks.

I Environment refers to where the plan executor carries out the actions, which can be set differently
according to specific tasks, e.g., the LLM itself or external virtual world like Minecraft.

Silin Du (MS&E) LLMs and RS September 22, 2023 37 / 117

Overall Framework II

38

it is mainly effective for the tasks that require step-by-
step reasoning [33], e.g., arithmetic reasoning, commonsense
reasoning, and symbolic reasoning. Whereas, for other tasks
that do not rely on complex reasoning, CoT might lead
to worse performance than standard prompting [338], e.g.,
MNLI-m/mm, SST-2, and QQP from GLUE [193]. Inter-
estingly, it seems that the performance gain brought by
CoT prompting could be significant only when standard
prompting yields poor results [33].

Why LLMs Can Perform CoT Reasoning? As the second
question, we discuss the underlying mechanism of CoT in
the following two aspects.

• The source of CoT ability. Regarding the source of CoT
capability, it is widely hypothesized that it can be attributed
to training on code since models trained on it show a strong
reasoning ability [47, 340]. Intuitively, code data is well
organized with algorithmic logic and programming flow,
which may be useful to improve the reasoning performance
of LLMs. However, this hypothesis still lacks publicly re-
ported evidence of ablation experiments (with and without
training on code). In addition, instruction tuning seems not
to be the key reason to obtain the CoT ability, since it has
been empirically shown that instruction tuning on non-CoT
data does not improve the performance on held-out CoT
benchmarks [64].

• The effect of prompting components. The major distinction
between CoT prompting and standard prompting is the
incorporation of reasoning paths prior to the final answer.
Thus, some researchers investigate the effects of different
components in the reasoning paths. Specifically, a recent
study identifies three key components in CoT prompting,
namely symbols (e.g., numerical quantities in arithmetic rea-
soning), patterns (e.g., equations in arithmetic reasoning),
and text (i.e., the rest of tokens that are not symbols or
patterns) [341]. It is shown that the latter two parts (i.e., pat-
terns and text) are essential to the model performance, and
removing either one would lead to a significant performance
drop. However, the correctness of symbols and patterns
does not seem critical. Further, there exists a symbiotic
relationship between text and patterns: the text helps LLMs
to generate useful patterns, and patterns aid LLMs to under-
stand tasks and generate texts that help solve them [341].

In summary, CoT prompting provides a general yet
flexible approach to eliciting the reasoning ability of LLMs.
There are also some preliminary attempts to extend this
technique to solve multimodal [342] and multilingual
tasks [343].

6.3 Planning for Complex Task Solving
Prompting with ICL and CoT is a conceptually simple yet
general approach to solving various tasks. However, this
approach struggles with complex tasks like mathematical
reasoning [344] and multi-hop question answering [345]. As
an enhanced approach, prompt-based planning has been
proposed to break down complex tasks into smaller sub-
tasks and generate a plan of actions to accomplish the task.

6.3.1 The Overall Framework
In this part, we first formulate the general planning
paradigm of LLMs for solving complex tasks.

Plan ExecutorTask Planner
(LLM)

Environment

Task Result

Plan

(generate & refine)

Feedback Action

Internal External

LLM Tool
(e.g., Code Interpreter)

World
(e.g., Minecraft)

…

Others

Planning
Framework

Fig. 12: An illustration of the formulation for prompt based
planning by LLMs for solving complex tasks.

In this paradigm, there are typically three components:
task planner, plan executor, and environment39. Specifically,
task planner, which is played by LLMs, aims to generate
the whole plan to solve a target task. The plan can be
present in different forms, e.g., an action sequence in the
form of natural language [303] or an executable program
written in programming language [346]. Then, plan executor
is responsible for executing the actions in the plan. It can be
implemented by models like LLMs for textual tasks [347]
or by objects like robots for embodied tasks [348]. Further-
more, environment refers to where the plan executor carries
out the actions, which can be set differently according to
specific tasks, e.g., the LLM itself [349] or external virtual
world like Minecraft [350]. It provides feedback about the
execution result of the action to the task planner, either in
the form of natural language [351] or from other multimodal
signals [352].

For solving a complex task, the task planner first needs to
clearly understand the task goal and generate a reasonable
plan based on the reasoning of LLMs (See Section 6.3.2).
Then, the plan executor acts according to the plan in the
environment and the environment will produce feedback
for the task planner (See Section 6.3.3). The task planner
can further incorporate the feedback obtained from the
environment to refine its initial plan and iteratively perform
the above process to get better results as the task solution
(See Section 6.3.4).

Next, we will introduce the three key steps in planning
based task solving.

6.3.2 Plan Generation
Plan generation focuses on directly generating action se-
quences by prompting LLMs. Based on the format of the
generated plans, existing work can be divided into two
groups: text-based and code-based approaches.

39. Despite the similarity with RL, our formulation decouples the
planning and execution phases, whereas in RL, they are typically
interleaved in the agent. This paradigm is defined in a general yet
slightly loose way, and it mainly aims to help readers understand the
key idea underlying the planning approaches of LLMs.

Fig. 1.11: An illustration of the formulation for prompt based planning by LLMs for solving complex tasks.

Silin Du (MS&E) LLMs and RS September 22, 2023 38 / 117

Key Steps I

1. Plan generation focuses on directly generating action sequences by prompting LLMs.
I Text-based approaches generate plans in the form of natural language, e.g., ToolFormer [32].
I Code-based approaches generate more verifiable plans in the form of executable code in programming

languages (Python), e.g., LLM+P [25].

2. Feedback acquisition.
I Internal feedback. The LLM itself can be utilized as a feedback provider.

Reflexion [35] utilizes LLMs to transform sparse result signals (e.g., success or failure) into concrete
text-based feedback (e.g., "You should recommend comedies that the user mentions in the query instead of
horror movies") and stores this feedback in long-term memory for future planning.

I External feedback. For example, code interpreters, virtual worlds like Minecraft.

Silin Du (MS&E) LLMs and RS September 22, 2023 39 / 117

Key Steps II

3. Plan Refinement.
I Reasoning.

The feedback data from the environment may not be directly suitable to be utilized by LLMs for plan
refinement. Some work adds the explicit reasoning process to extract critical information from feed-
back.

I Backtracking.
Early methods mainly consider planning forward actions while maintaining the existing plan, thus
likely leading to local optimal plans based on a short-term evaluation. To solve this, Tree of Thoughts [47]
allows backtracking with search algorithms like breadth-first and depth-first search to make global
planning.

I Memorization.
In order to handle long-horizon tasks, it has become a key approach to aid plan refinement with long-
term memory.

Silin Du (MS&E) LLMs and RS September 22, 2023 40 / 117

Contents

Large Language Model
Key Concepts and Recent Developments
Pre-training
Instruction Tuning
Alignment Tuning
Parameter-efficient and Memory-efficient
Model Adaptation
In-context Learning and Chain-of-thought
Prompting

Planning for Complex Task Solving
Capacity Evaluation
LLMs for Recommendations
LLMs for Recommendations
Generative Recommendation with LLMs
TALLRec
ChatGPT for Recommendations
LLM for Job Recommendation
RecruitPro
Generative Job Recommendations

Basic Ability

Three basic types of ability evaluation for LLMs:

1. Language Generation

2. Knowledge Utilization

3. Complex Reasoning

Silin Du (MS&E) LLMs and RS September 22, 2023 41 / 117

Language Generation I

I Language Modeling aims to predict the next token based on the previous token.
Datasets: Penn Treebank, WikiText-103, Pile and LAMBADA (to predict the last word of sen-
tences based on a paragraph of context).
Metric: accuracy and perplexity.

I Conditional Text Generation focuses on generating texts satisfying specific task demands based
on the given conditions, typically including machine translation, text summarization, question
answering, and strutured data generation and long text generation for LLMs.
Metric: accuracy, BLEU, ROUGE, and human ratings.

I Code Synthesis means generating formal language. LLMs show strong abilities to generate com-
puter programs.
Metric: Pass rate (checked by compilers or interpreters)

Silin Du (MS&E) LLMs and RS September 22, 2023 42 / 117

Language Generation II

Two major issues:

I Unreliable generation evaluation: LLMs have been capable of generating texts with a compa-
rable quality to human-written texts, which however might be underestimated by automatic
reference-based metrics.

I Inconsistency between human evaluation and automatic reference-based metrics
I Difficult to achieve consensus among human annotators

I Underperforming specialized generation: LLMs may fall short in mastering generation tasks that
require domain-specific knowledge or generating structured data.

Silin Du (MS&E) LLMs and RS September 22, 2023 43 / 117

Knowledge Utilization I

Knowledge utilization is an important ability of intelligent systems to accomplish knowledge-
intensive tasks (e.g., commonsense question answering and fact completion) based on supporting
factual evidence.

I Closed-Book QA tests the acquired factual knowledge of LLMs from the pre-training corpus,
where LLMs should answer the question only based on the given context without using external
resources.
Datasets: Natural Questions, Web Questions, and TriviaQA.
Metric: Accuracy.

I Open-Book QA allows LLMs to extract useful evidence from the external knowledge base or
document collections, and then answer the question based on the extracted evidence. LLMs for
Open-Book QA tasks are often paired with a text retriever (or even a search engine).
Datasets: have overlap with close-book QA datasets, but with external data sources.

Silin Du (MS&E) LLMs and RS September 22, 2023 44 / 117

Knowledge Utilization II

I Knowledge Completion. LLMs might be considered as a knowledge base, which can be leveraged
to complete or predict the missing parts of knowledge units (e.g., knowledge triples).
Datasets: Knowledge graph completion tasks (FB15k-237) and fact completion tasks (WikiFact).
It is difficult for existing LLMs to accomplish knowledge completion tasks related to specific
relation types.

Major Issues.
I Hallucination. The generated information is either in conflict with the existing source (intrinsic

hallucination) or cannot be verified by the available source (extrinsic hallucination)
1. Existing work shows that LLMs encounter difficulties in recognizing the hallucinated content in text.
2. LLMs still lack an ability to accurately control the use of internal or external knowledge.

Silin Du (MS&E) LLMs and RS September 22, 2023 45 / 117

Knowledge Utilization III

43

(b) Extrinsic hallucination(a) Intrinsic hallucination

Explain RLHF for LLMs.

RLHF stands for "Rights, Limitations, Harms, and
Freedoms" and is a framework for …… models like
LLMs (Large Language Models).

Bob’s wife is Amy. Bob’s daughter is Cindy.
Who is Cindy to Amy?

Cindy is Amy’s daughter-in-law.

Fig. 13: Examples of intrinsic and extrinsic hallucination for a public LLM (access date: March 19, 2023). As an example
of intrinsic hallucination, the LLM gives a conflicting judgment about the relationship between Cindy and Amy, which
contradicts the input. For extrinsic hallucination, in this example, the LLM seems to have an incorrect understanding of
the meaning of RLHF (reinforcement learning from human feedback), though it can correctly understand the meaning of
LLMs (in this context).

beyond language tasks, a recent study has shown that large
vision-language models (LVLM) also face challenges with
hallucination, i.e., generating objects that are not present in
the accompanying images [472]. In essence, LLMs seem
to “unconsciously” utilize the knowledge in task solving,
which still lack an ability to accurately control the use
of internal or external knowledge. Hallucinations would
mislead LLMs to generate undesired outputs and mostly
degrade the performance, leading to potential risks when
deploying LLMs in real-world applications. To alleviate
this problem, alignment tuning strategies (as discussed in
Section 5.2) have been widely utilized in existing work [61],
which rely on tuning LLMs on high-quality data or using
human feedback. Moreover, the integration of external
tools for the provision of credible information sources can
help alleviate the hallucination issue [72, 469, 471]. Another
line of research work leverages uncertainty estimation of
LLMs to identify hallucinations [473, 474]. For instance,
considering that hallucinated facts are prone to exhibit
inconsistency across different sampled outputs, SelfCheck-
GPT [474] detects hallucination by measuring information
inconsistency within sampled outputs. For the evaluation
of the hallucination problem, a set of hallucination de-
tection tasks have been proposed, e.g., TruthfulQA [385]
for detecting human falsehood mimicked by models. More
recently, HaluEval [471] creates a large-scale LLM-generated
and human-annotated hallucinated samples to evaluate the
ability of language models to recognize hallucination in both
task-specific and general scenarios.

Hallucination

LLMs are prone to generate untruthful informa-
tion that either conflicts with the existing source
or cannot be verified by the available source.
Even the most powerful LLMs such as ChatGPT
face great challenges in migrating the halluci-
nations the generated texts. This issue can be
partially alleviated by special approaches such as
alignment tuning and tool utilization.

• Knowledge recency. As another major challenge, LLMs
would encounter difficulties when solving tasks that require

the latest knowledge beyond the training data. To tackle
this issue, a straightforward approach is to regularly update
LLMs with new data. However, it is very costly to fine-tune
LLMs, and also likely to cause the catastrophic forgetting
issue when incrementally training LLMs. Therefore, it is
necessary to develop efficient and effective approaches that
can integrate new knowledge into existing LLMs, making
them up-to-date. Existing studies have explored how to
utilize the external knowledge source (e.g., search engine)
to complement LLMs, which can be either jointly optimized
with LLMs [463] or used as a plug-and-play module [469].
For instance, ChatGPT utilizes a retrieval plugin to access
up-to-date information sources [475]. By incorporating the
extracted relevant information into the context [476–478],
LLMs can acquire new factual knowledge and perform
better on relevant tasks. However, such an approach seems
to be still at a superficial level. In addition, existing studies
also explore editing parameters of language models to up-
date intrinsic knowledge [479–481]. Nevertheless, previous
work [482] has shown that several parameter editing meth-
ods perform not well on LLMs, though they can improve
the performance of small language models. Therefore, it
is still difficult to directly amend intrinsic knowledge or
inject specific knowledge into LLMs, which remains an open
research problem [479, 480].

Knowledge Recency

The parametric knowledge of LLMs is hard to be
updated in a timely manner. Augmenting LLMs
with external knowledge sources is a practical
approach to tackling the issue. However, how
to effectively update knowledge within LLMs
remains an open research problem.

7.1.3 Complex Reasoning

Complex reasoning refers to the ability of understanding
and utilizing supporting evidence or logic to derive con-
clusions or make decisions [51, 52]. According to the type
of involved logic and evidence in the reasoning process,
we consider dividing existing evaluation tasks into three

Fig. 1.12: Examples of intrinsic and extrinsic hallucination for a public LLM.

I Knowledge Recency. LLMs would encounter difficulties when solving tasks that require the latest
knowledge beyond the training data.
It is very costly to fine-tune LLMs, and also likely to cause the catastrophic forgetting issue
when incrementally training LLMs.

Silin Du (MS&E) LLMs and RS September 22, 2023 46 / 117

Complex Reasoning I

Complex reasoning refers to the ability of understanding and utilizing supporting evidence or logic
to derive conclusions or make decisions.

I Knowledge Reasoning. The knowledge reasoning tasks rely on logical relations and evidence
about factual knowledge to answer the given question.
Dataset: CSQA, StrategyQA (commonsense reasoning) and ScienceQA (science knowledge rea-
soning).
Chian-of-thought (CoT) prompting strategy improves the reasoning performance.

I Symbolic Reasoning mainly focuses on manipulating the symbols in a formal rule setting to fulfill
some specific goal, where the operations and rules may have never been seen by LLMs during
pretraining.
Evaluation task: Last letter concatenation.

Silin Du (MS&E) LLMs and RS September 22, 2023 47 / 117

Complex Reasoning II

I Mathmetical Reasoning need to comprehensively utilize mathematical knowledge, logic, and
computation for solving problems or generating proof statements.

1. Math problem solving tasks
Dataset: SVAMP, GSM8k, and MATH
Strategy: CoT prompting and continually pre-training

2. Automated theorem proving (ATP)
Dataset: PISA and miniF2F

Major Issues

I Reasoning inconsistency. LLMs may generate the correct answer following an invalid reasoning
path, or produce a wrong answer after a correct reasoning process, leading to inconsistency
between the derived answer and the reasoning process.
Solution: Fine-tune LLMs with process-based feedback.

Silin Du (MS&E) LLMs and RS September 22, 2023 48 / 117

Complex Reasoning III

I Numerical computation. LLMs still face difficulties in the involved numerical computation, espe-
cially for the symbols that are seldom encountered during pre-training, such as arithmetic with
large numbers.
Solution: External tools or tokenize digits into individual tokens.

Silin Du (MS&E) LLMs and RS September 22, 2023 49 / 117

Advanced Ability I

I Human Alignment. It is desired that LLMs could well conform to human values and needs.

1. Helpfulness and honesty: adversarial question answering tasks.
2. Harmlessness: CrowS-Pairs and Winogender.

I Interaction with External Environment. LLMs have the ability to receive feedback from the ex-
ternal environment and perform actions according to the behavior instruction, e.g., generating
action plans in natural language to manipulate agents.

1. Several embodied AI environments: VirtualHome, ALFRED, BEHAVIOR, Apart, ect.
2. Multi-agent collaboration.

I Tool Manipulation. When solving complex problems, LLMs can turn to external tools if they
determine it is necessary, e.g., seach engine, calculator, and compiler.
Math problem solving and knowledge question answering.

Silin Du (MS&E) LLMs and RS September 22, 2023 50 / 117

Contents

Large Language Model
Key Concepts and Recent Developments
Pre-training
Instruction Tuning
Alignment Tuning
Parameter-efficient and Memory-efficient
Model Adaptation
In-context Learning and Chain-of-thought
Prompting

Planning for Complex Task Solving
Capacity Evaluation
LLMs for Recommendations
LLMs for Recommendations
Generative Recommendation with LLMs
TALLRec
ChatGPT for Recommendations
LLM for Job Recommendation
RecruitPro
Generative Job Recommendations

Limitations of Current RecSys

1. Previous DNN-based models (e.g., CNN and LSTM) and pre-trained language models (e.g.,
BERT) for recommender systems cannot sufficiently capture textual knowledge about users and
items, demonstrating their inferior natural language understanding capability.

2. Most existing RecSys methods have been specifically designed for their own tasks and have
inadequate generalization ability to their unseen recommendation tasks.

3. Most existing DNN-based recommendation methods can achieve promising performance on
recommendation tasks needing simple decisions (e.g., rating prediction, and top-k recommen-
dations). However, they face difficulties in supporting complex and multi-step decisions that in-
volve multiple reasoning steps (e.g., trip planning recommendations).

Silin Du (MS&E) LLMs and RS September 22, 2023 51 / 117

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2023 2

Large Language Models (LLMs)
for Recommender SystemsChatGPT LLaMAGPT-J Vicuna

 A user recently watched movies:

 Based on the watch history, please
 recommend five candidate movies
 that the user might be interested in
 from the following list:

......

Top-K Recommendation

 Based on the watch history, I assume
 this user is interested in movies of
 ... genres and ... actor/actress. Here
 are the top five candidate movies:

 Here is the movie rating history of a
 user:

 8.0 9.2 9.8 7.5
 Based on the above rating history of
 this user, please rate a movie named
 John Wick: Chapter 4 with a range
 of 1-10 points.

Rating Prediction

 The movie John Wick: Chapter 4 has
 the similar ... to ... movie in the rating
 history.

 Thus, the rating is likely to be 9.0.

 [User]: I recently watched a science
 fiction movie named Interstellar

 Please recommend some ... to me.
--
 [User]:
--
 [User]: But I don't like ... because ...
 Could you recommend other

Conversational Recommendation

 [LLM]: Sure! Here are some ...
 recommended to you:
--
 [LLM]:
--
 [LLM]: My apologies! Here are

 A new movie named The Godfather
 Part II is recommended to a user,

 who has recently watched movies:

 Please explain why this new movie is
 recommended to the user.

Explanation Generation

 This new movie is recommended to
 the user because the ... features of
 this new movie are similar to the ...
 of movies that recently watched by
 this user. Thus, the user may want to
 watch the recommended new movie.

Figure 1: Examples of the applications of LLMs for various recommendation tasks in the scenario of movie recommendations.
LLMs can leverage textual data (or even multimodal data like images) for recommendation tasks.

pre-trained language models (e.g., BERT) for recommender
systems cannot sufficiently capture textual knowledge
about users and items, demonstrating their inferior natural
language understanding capability, which leads to sub-
optimal prediction performance in various recommendation
scenarios. Second, most existing RecSys methods have been
specifically designed for their own tasks and have inadequate
generalization ability to their unseen recommendation
tasks. For example, a recommendation algorithm is well-
trained on a user-item rating matrix for predicting movies’
rating scores, while it is challenging for this algorithm to
perform top-k movie recommendations along with certain
explanations. This is due to the fact that the design of
these recommendation architectures highly depends on
task-specific data and domain knowledge toward specific
recommendation scenarios such as top-k recommendations,
rating predictions, and explainable recommendations. Third,
most existing DNN-based recommendation methods can
achieve promising performance on recommendation tasks
needing simple decisions (e.g., rating prediction, and top-
k recommendations). However, they face difficulties in
supporting complex and multi-step decisions that involve
multiple reasoning steps. For instance, multi-step reasoning
is crucial to trip planning recommendations, where RecSys
should first consider popular tourist attractions based on the
destination, then arrange a suitable itinerary corresponding
to the tourist attractions, and finally recommend a journal
plan according to specific user preferences (e.g., cost and time
for travel).

Recently, as advanced natural language processing
techniques, Large Language Models (LLMs) with billion

parameters have generated large impacts on various research
fields such as Natural Language Processing (NLP) [15],
Computer Vision [16], and Molecule Discovery [17]. Tech-
nically, most existing LLMs are transformer-based models
pre-trained on a vast amount of textual data from diverse
sources, such as articles, books, websites, and other publicly
available written materials. As the parameter size of LLMs
continues to scale up with a larger training corpus, recent
studies indicated that LLMs can lead to the emergence of
remarkable capabilities [18], [19]. More specifically, LLMs
have demonstrated the unprecedently powerful abilities of
their fundamental responsibilities in language understanding
and generation. These improvements enable LLMs to better
comprehend human intentions and generate language
responses that are more human-like in nature. Moreover,
recent studies indicated that LLMs exhibit impressive
generalization and reasoning capabilities, making LLMs
better generalize to a variety of unseen tasks and domains.
To be specific, instead of requiring extensive fine-tuning on
each specific task, LLMs can apply their learned knowledge
and reasoning skills to fit new tasks simply by providing
appropriate instructions or a few task demonstrations.
Advanced techniques such as in-context learning can further
enhance such generalization performance of LLMs without
being fine-tuned on specific downstream tasks [19]. In
addition, empowered by prompting strategies such as chain-
of-thought, LLMs can generate the outputs with step-by-
step reasoning in complicated decision-making processes.
Hence, given their powerful abilities, LLMs demonstrate
great potential to revolutionize recommender systems.

Very recently, initial efforts have been made to explore

Fig. 2.1: Examples of the applications of LLMs for various recommendation tasks in the scenario of movie rec-
ommendations.

Silin Du (MS&E) LLMs and RS September 22, 2023 52 / 117

LLM-empowered RecSys

Two types of LLM-empowered RecSys that take advantage of LLMs to learn the representation of
users and items

1. ID-based Recommender Systems
Modern recommendation approaches are proposed to model these behaviors by learning em-
bedding vectors of each ID representation.

2. Textual Side Information-enhanced Recommender Systems
I Pure ID indexing of users and items is naturally discrete, which cannot provide sufficient semantic

information.
I It is very challenging to perform relevance calculations based on index representations.
I ID indexing usually requires modifying the vocabularies and altering the parameters of LLMs, which

brings additional computation costs.

Silin Du (MS&E) LLMs and RS September 22, 2023 53 / 117

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2023 5

NBA

(ID-based representation)

<item_1001> <embeddings_A><item_1002> <item_1997>

User-item interactions:
(e.g., movie watch history)

Textual side information:
(e.g., user reviews)

(Textual side information-enhanced representation)

<embeddings_B> <embeddings_N>

Encoder (e.g., BERT)

<user_0999> <user_1000> <user_1024>

Discrete item IDs:

Discrete user IDs:

Semantic space
of users:

NBA

Figure 2: An illustration of two methods for representing users and items for LLM-based RecSys: ID-based representation
(left) which denotes user-item interactions with discrete identities, and Textual side information-enhanced representation (right)
which leverages textual side information of users and items, including user profiles, user reviews for items, item titles or
descriptions.

is used to train the P5 with personalized prompts. Meanwhile,
P5 incorporates the normal index phrase with a pair of
angle brackets to treat these indexes as special tokens in
the vocabulary of LLMs (e.g., < item 6637 >), avoiding
tokenizing the phrases into separate tokens. Based on P5,
Hua et al. put forward four straightforward but effective
indexing solutions [65]: sequential indexing, collaborative
indexing, semantic (content-based) indexing, and hybrid
indexing, underscoring the significance of indexing methods.
Different from P5’s randomly assigning numerical IDs to
each user or item, Semantic IDs, a tuple of codewords with
semantic meanings for each user or item, is proposed to
serve as unique identifiers, each carrying semantic meaning
for a particular user or item [66]. Meanwhile, to generate
these codewords, a hierarchical method called RQ-VAE
is also proposed [66] to leverage Semantic IDs, where
recommendation data formats can be effectively transformed
into natural language sequences for transformer-based
models.

3.2 Textual Side Information-enhanced Recommender
Systems
Despite the aforementioned success, ID-based methods suffer
from intrinsic limitations. That is due to the fact that pure
ID indexing of users and items is naturally discrete, which
cannot provide sufficient semantic information to capture
representations of users and items for recommendations.
As a result, it is very challenging to perform relevance
calculations based on index representations among users and
items, especially when user-item interactions are severely
sparse. Meanwhile, ID indexing usually requires modifying
the vocabularies and altering the parameters of LLMs, which
brings additional computation costs.

To address these limitations, a promising alternative
solution is to leverage textual side information of users and
items, which includes user profiles, user reviews for items,
and item titles or descriptions. Specifically, given the textual
side information of an item or a user, language models like
BERT can serve as the text encoder to map the item or user
into the semantic space, where we can group similar items
or users and figure out their differences in a more fine-
grained granularity. For instance, Li et al. have investigated
the performance comparison between ID and modality-based
recommender systems, showing that ID-based recommender

systems might be challenged by recommender systems
that can better utilize side information [67]. Meanwhile,
Unisec [68] is one such approach that takes advantage
of item descriptions to learn transferable representations
from various recommendation scenarios. More specifically,
Unisec also introduces a lightweight item encoder to
encode universal item representations by using parametric
whitening and a mixture-of-experts (MoE) enhanced adaptor.
Besides, text-based collaborative filtering (TCF) is also
explored by prompting LLMs like GPT-3 [69]. Compared to
the previous ID-based collaborative filtering, TCF methods
demonstrate positive performance, proving the potential of
textual side information-enhanced recommender systems.

However, solely relying on language models to encode
item descriptions might excessively emphasize text features.
To mitigate this issue, VQ-Rec [70] proposes to learn
vector-quantized item representations, which can map item
text into a vector of discrete indices (i.e., item codes)
and use them to retrieve item representations from a
code embedding table in recommendations. Beyond text
features, Fan et al. [71] propose a novel method for the
Zero-Shot Item-based Recommendation (ZSIR), focusing on
introducing a Product Knowledge Graph (PKG) to LLMs
to refine item features. More specifically, user and item
embeddings are learned via multiple pre-training tasks
upon the PKG. Moreover, ShopperBERT [72] investigates
modeling user behaviors to denote user representations
in e-commerce recommender systems, which pre-trains
user embedding through several pre-training tasks based
on user purchase history. Furthermore, IDA-SR [72], an
ID-Agnostic User Behavior Pre-training framework for
Sequential Recommendation, directly retains representations
from text information using pre-trained language models
like BERT. Specifically, given an item i and its description
with m tokens Di = {t1, t2, ..., tm}, an extra start-of-
sequence token [CLS] is added to the description Di =
{[CLS], t1, t2, ..., tm}. Then, the description is fed as the
input to LLMs. Finally, the embedding of the token [CLS]
could be used as the ID-agnostic item representation.

4 PRE-TRAINING & FINE-TUNING LLMS FOR REC-
OMMENDER SYSTEMS

In general, there are three key manners in developing
and deploying LLMs in recommendation tasks, namely,

Fig. 2.2: An illustration of two methods for representing users and items for LLM-based RecSys.

Silin Du (MS&E) LLMs and RS September 22, 2023 54 / 117

ID-based Recommender Systems

As the early exploration of LLM-based methods, a unified paradigm called P5 [14] is proposed.

I It transfer various recommendation data formats, such as user-item interactions, user profiles,
item descriptions, and user reviews, into natural language sequences by mapping users and
items into indexes.

I The pre-trained T5 backbone is used to train the P5 with personalized prompts.

I P5 incorporates the normal index phrase with a pair of angle brackets to treat these indexes as
special tokens in the vocabulary of LLMs (e.g., < item_6637 >), avoiding tokenizing the phrases
into separate tokens.

Silin Du (MS&E) LLMs and RS September 22, 2023 55 / 117

Textual Side Information-enhanced Recommender Systems

I Given the textual side information of an item or a user, language models like BERT can serve as
the text encoder to map the item or user into the semantic space.

I However, solely relying on language models to encode item descriptions might excessively
emphasize text features.

I Zero-Shot Item-based Recommendation (ZSIR) [9] introduces a Product Knowledge Graph (PKG)
to LLMs to refine item features. User and item embeddings are learned via multiple pre-training
tasks upon the PKG.

I ShopperBERT [34] investigates modeling user behaviors to denote user representations, which
pre-trains user embedding through several pre-training tasks based on user purchase history.

Silin Du (MS&E) LLMs and RS September 22, 2023 56 / 117

Pre-training for Recommender Systems I

Two main pre-training methods:

1. Masked Language Modeling (MLM) randomly masks tokens or spans in the sequence and re-
quires LLMs to generate the masked tokens or spans based on the remaining context. (encoder-
decoder)

2. Next Token Prediction (NTP) requires prediction for the next token based on the given context.
(decoder-only)

Silin Du (MS&E) LLMs and RS September 22, 2023 57 / 117

Pre-training for Recommender Systems II

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2023 6

Large corpus
unlabeled data

Pre-training highesthighest

LLMs

(Masked Language Modeling)

[CLS] w1 w2 wn[MASK] [SEP]

[CLS] w1 w2 wpredict wn...... [SEP]

0.1% 3% ... 0.7%Probability of words

LLMs

[SEP] w1 w2

w1 w2 w3

0.6% 1% ... 0.2%Probability of words

(Next Token Prediction)

: tunable

Figure 3: An illustration of two main pre-training methods of LLMs: Masked Language Modeling (left) which randomly masks
tokens or spans in the sequence and requires LLMs to generate the masked tokens or spans based on the remaining context,
and Next Token Prediction (right) which requires prediction for the next token based on the given context. In pre-training,
LLMs are trained on a vast amount of corpus consisting of diverse and unlabeled data.

Table 1: Pre-training methods for LLM-empowered RecSys.

Paradigms Methods Pre-training Tasks Code Availability

Pre-training
PTUM [73] Masked Behavior Prediction https://github.com/wuch15/PTUMNext K Behavior Prediction

M6 [60] Auto-regressive Generation Not available
P5 [62] Multi-task Modeling https://github.com/jeykigung/P5

pre-training, fine-tuning, and prompting. In this section, we
first introduce the pre-training and fine-tuning paradigms,
which are shown in Figure 3 and Figure 4, respectively.
More specifically, we will focus on the specific pre-training
tasks applied in LLMs for recommender systems and fine-
tuning strategies for better performance in downstream
recommendation tasks. Note that the works mentioned below
are summarized in Table 1 and Table 2.

4.1 Pre-training Paradigm for Recommender Systems

Pre-training is an important step in developing LLMs.
It involves training LLMs on a vast amount of corpus
consisting of diverse and unlabeled data. This strategy
enables LLMs to acquire a broad understanding of various
linguistic aspects, including grammar, syntax, semantics,
and even common sense reasoning. Through pre-training,
LLMs can learn to recognize and generate coherent and
contextually appropriate responses. In general, there are two
main methods to pre-train LLMs in the natural language
domain, depending on the adopted model structure. One
is Masked Language Modeling (MLM) for encoder-only or
encoder-decoder Transformer structures, which randomly
masks tokens or spans in the sequence and requires LLMs to
generate the masked tokens or spans based on the remaining
context [82]. The other is Next Token Prediction (NTP)
for decoder-only Transformer structures, which requires
prediction for the next token based on the given context
[41].

In the context of recommender systems, most of the
existing works follow the two classical pre-training strategies.
Next, we will introduce representative methods. PTUM [73]
proposes two similar pre-training tasks, Masked Behavior
Prediction (MBP) and Next K behavior Prediction (NBP),
to model user behaviors in recommender systems. Unlike
language tokens, user behaviors are more diverse and thus
more difficult to be predicted. In this case, instead of masking

a span of tokens, PTUM only masks a single user behavior
with the goal of predicting the masked behavior based on
the other behaviors in the interaction sequence of the target
user. On the other side, NBP models the relevance between
past and future behaviors, which is crucial for user modeling.
The goal of NBP is to predict the next k behaviors based on
the user-item interaction history.

M6 [60] also adopts two pre-training objectives motivated
by the two classical pre-training tasks, namely a text-
infilling objective and an auto-regressive language generation
objective, corresponding to the above two pre-training tasks,
respectively. To be more specific, the text-infilling objective
exhibits the pre-training task of BART [83], which randomly
masks a span with several tokens in the text sequence
and predicts these masked spans as the pre-training target,
providing the capability to assess the plausibility of a text or
an event in the recommendation scoring tasks. Meanwhile,
the auto-regressive language generation objective follows the
Next Token Prediction task in natural language pre-training,
but it is slightly different as it predicts the unmasked sentence
based on the masked sequence.

Additionally, P5 adopts multi-mask modeling and mixes
datasets of various recommendation tasks for pre-training.
In this case, it can be generalized to various recommendation
tasks and even unseen tasks with zero-shot generation ability
[62]. Across different recommendation tasks, P5 applies a
unified indexing method for representing users and items in
language sequence as stated in Section 3 so that the Masked
Language Modelling task could be employed.

4.2 Fine-tuning Paradigm for Recommender Systems

Fine-tuning is a crucial step in deploying pre-trained
LLMs for specific downstream tasks. Especially for rec-
ommendation tasks, LLMs require fine-tuning to grasp
more domain knowledge. Particularly, fine-tuning paradigm
involves training the pre-trained model based on task-specific

Fig. 2.3: An illustration of two main pre-training methods of LLMs.

Silin Du (MS&E) LLMs and RS September 22, 2023 58 / 117

Pre-training for Recommender Systems III

PTUM [42] proposes two similar pre-training tasks

1. Masked Behavior Prediction (MBP) masks a single user behavior with the goal of predicting the
masked behavior based on the other behaviors in the interaction sequence of the target user.

2. Next K Behavior Prediction (NBP) predicts the next K behaviors based on the user-item interaction
history.

M6-rec [5] also adopts two pre-training objectives

1. Text-infilling

2. Auto-regressive language generation

Silin Du (MS&E) LLMs and RS September 22, 2023 59 / 117

Fine-tuning for Recommender Systems I

LLMs require fine-tuning to grasp more domain knowledge, which involves training the pre-trained
model based on task-specific recommendation datasets that include user-item interaction behaviors
(e.g., purchase, click, ratings) and side knowledge (e.g., users’ social relations and items’ descriptions).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2023 7

InputLoss

(Parameter-efficient Fine-tuning)

Grounding output

Output LLMs Loss

Grounding output

Output

e.g., Adapters Update

LLMs

UpdateSmall corpus
task-specific data

: tunable

: frozen

Fine-tuning

(Full-model Fine-tuning)

Input

Figure 4: An illustration of two main fine-tuning methods of LLMs: Full-model Fine-tuning (left) which involves changing
the entire model weights, and Parameter-efficient Fine-tuning (right) which involves fine-tuning a small proportion of model
weights or a few extra trainable weights while fixing most of the parameters in LLMs. In fine-tuning, LLMs are trained on a
relatively small amount of corpus (i.e., compared to the amount of corpus for pre-training) of task-specific data.

Table 2: Fine-tuning methods applied in LLM-empowered RecSys.

Paradigms Methods References

Fine-tuning Full-model Fine-tuning [74], [75], [76], [77], [78], [79], and [80]1
Parameter-efficient Fine-tuning [59]2, [81], and [60]

Code Availability: 1https://github.com/veason-silverbullet/unitrec, 2https://github.com/sai990323/tallrec

recommendation datasets that include user-item interaction
behaviors (e.g., purchase, click, ratings) and side knowledge
about users and items (e.g., users’ social relations and items’
descriptions). This process allows the model to specialize
its knowledge and parameters to improve performance
in the recommendation domain. In general, fine-tuning
strategies can be divided into two categories according to
the proportion of model weights changed to fit the given
task. One is full-model fine-tuning, which changes the entire
model weights in the fine-tuning process. By considering the
computation cost, the other is parameter-efficient fine-tuning,
which aims to change only a small part of weights or develop
trainable adapters to fit specific tasks.

4.2.1 Full-model Fine-tuning

As a straightforward strategy in deploying pre-trained LLMs
to fit specific downstream recommendation tasks, full-model
fine-tuning involves changing the entire model weights. For
example, RecLLM [74] is proposed to fine-tune LaMDA as
a Conversational Recommender System (CRS) for YouTube
video recommendation. Meanwhile, GIRL [78] leverages a
supervised fine-tuning strategy for instructing LLMs in job
recommendation. However, directly fine-tuning LLMs might
bring unintended bias into recommender systems, producing
serious harm towards specific groups or individuals based
on sensitive attributes such as gender, race and occupation.
To mitigate such harmful effects, a simple LLMs-driven
recommendation (LMRec) [75] is developed to alleviate the
observed biases through train-side masking and test-side
neutralization of non-preferential entities, which achieves
satisfying results without significant performance drops.
TransRec [76] studies pre-trained recommender systems in
an end-to-end manner, by directly learning from the raw
features of the mixture-of-modality items (i.e., texts and
images). In this case, without relying on overlapped users
or items, TransRec can be effectively transferred to different
scenarios. Additionally, Carranza et al. [77] propose privacy-

preserving large-scale recommender systems by applying
differentially private (DP) LLMs, which relieves certain
challenges and limitations in DP training.

Contrastive learning has also emerged as a popular
approach for fine-tuning LLMs in recommender systems.
Several methods have been proposed in this direction.
SBERT [79] introduces a triple loss function, where an
intent sentence is paired with an anchor, and corresponding
products are used as positive and negative examples in the
e-commerce domain. Additionally, UniTRec [80] proposes a
unified framework that combines discriminative matching
scores and candidate text perplexity as contrastive objectives
to improve text-based recommendations.

4.2.2 Parameter-efficient Fine-tuning

Full-model fine-tuning requires large computational re-
sources as the size of LLMs scales up. Currently, it is
infeasible for a single consumption-level GPU to fine-tune
the most advanced LLMs, which usually have more than
10 billion parameters. In this case, Parameter-efficient Fine-
tuning (PEFT) targets fine-tuning LLMs efficiently with lower
requirements for computational resources. PEFT involves
fine-tuning a small proportion of model weights or a few
extra trainable weights while fixing most of the parameters
in LLMs to achieve comparable performance with full-model
fine-tuning.

Currently, the most popular PEFT methods lie in intro-
ducing extra trainable weights as adapters. The adapter
structure is designed for embedding into the transformer
structure of LLMs [84]. For each Transformer layer, the
adapter module is added twice: the first module is added
after the projection following the multi-head attention, and
the other is added after the two feed-forward layers. During
fine-tuning, the original weights of pre-trained LLMs are
fixed, while the adapters and layer normalization layers are
fine-tuned to fit downstream tasks. Thus, adapters contribute
to the expansion and generalization of LLMs, relieving the

Fig. 2.4: An illustration of two main fine-tuning methods of LLMs.

Silin Du (MS&E) LLMs and RS September 22, 2023 60 / 117

Fine-tuning for Recommender Systems II

1. Full-model Fine-tuning
I RecLLM [11] fine-tunes LaMDA as a Conversational Recommender System (CRS) for YouTube video

recommendation.
I GIRL [52] leverages a supervised fine-tuning strategy for instructing LLMs in job recommendation.

Directly fine-tuning LLMs might bring unintended bias into recommender systems, produc-
ing serious harm towards specific groups or individuals based on sensitive attributes such as
gender, race and occupation. (LMRec [33])

2. Parameter-efficient Fine-tuning (PEFT) involves fine-tuning a small proportion of model weights
or a few extra trainable weights.
I TALLRec [1] introduces an efficient and effective tuning framework on the LLaMA-7B.
I GLRec [43] takes the advantage of LoRA for fine-tuning and adapting LLMs as job recommender.

Silin Du (MS&E) LLMs and RS September 22, 2023 61 / 117

Prompting LLMs for Recommender Systems I

Prompting enables LLMs to unify different downstream tasks into language generation tasks, which
are aligned to their objectives during pre-training.

1. Prompting keeps LLMs frozen (i.e., no parameters updates), and adapt LLMs to downstream
tasks via task-specific prompts.

2. Prompt Tuning serves as an additive technique of prompting, which adds new prompt tokens to
LLMs and optimizes the prompt based on the task-specific dataset.

3. Instruction Tuning trains LLMs to follow prompts as task instructions, rather than to solve spe-
cific downstream tasks.

Silin Du (MS&E) LLMs and RS September 22, 2023 62 / 117

Prompting LLMs for Recommender Systems II

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, SUBMISSION 2023 9

Prompting
<Prompt><Task description> <Demonstrations>

+ LLMs OutputInput-output examples
based on task-specific dataset

LLMs

Discrete or Continuous

t1 t2 ... tn

<Prompt tokens><Original input>

...... Output Loss Grounding
output

LLMs Output Loss Grounding
output

Update

+

+

A set of <Instruction> for multiple tasks

: tunable

: frozen

(In-context learning)

(Prompt tuning)

(Instruction tuning)

Update

Figure 5: An illustration of three representative methods of prompting LLMs: in-context learning (top) which requires no
parameter update of LLMs, prompt tuning (middle) which adds new prompt tokens to LLMs and optimizes the prompt
along with minimal parameter updates at the input layer of LLMs, and instruction tuning (bottom) which fine-tunes LLMs
over multiple tasks-specific prompts, also known as instructions.

• Prompting LLMs for RecSys via Few-shot ICL. A
straightforward approach for prompting LLMs to down-
stream recommendation tasks is to teach LLMs how
to act as RecSys. For instance, Liu et al. [39] employ
ChatGPT and propose separate task descriptions tailored
to different recommendation tasks, including top-K
recommendation, rating prediction, and explanation gen-
eration, to perform few-shot ICL based on corresponding
input-output examples of each recommendation task.
For instance, the user rating history is given as an
example for rating prediction tasks. Similarly, other
existing works propose their distinct insights into
designing the in-context demonstrations for better
recommendation performance. For example, a text
description of role injection, such as “You are a book
rating expert.”, is proposed in [58] to augment the in-
context demonstrations, which prevents LLMs from
refusing to complete the recommendation tasks (e.g.,
LLMs sometimes respond with “As a language model, I
don’t have the ability to recommend ...” for recommendation
tasks). Apart from teaching LLMs to directly act as
RecSys, few-shot ICL is also leveraged to guide LLMs
to call traditional RecSys or external domain tools for
recommendations. For example, a framework named
Chat-Rec [3] is proposed to bridge ChatGPT and tradi-
tional RecSys via few-shot ICL, where ChatGPT learns
to receive candidate items from traditional RecSys and
then refines the final recommendation results. What’s
more, Zhang [101] designs a textual API call template
for external graph reasoning tools and successfully
teaches ChatGPT to use those templates through few-
shot ICL to access the graph-based recommendation
results generated by the external tools.

• Prompting LLMs for RecSys via Zero-shot ICL. Many
existing works consider both few-shot ICL and zero-
shot ICL settings at the same time to compare their
performance under the same recommendation tasks.
Typically, few-shot ICL can outperform zero-shot ICL

Your task is to recommend
a new item based on ____.

Task description

User-item interactions:
[1] <item title 1>
[2] <item title 2>
[3] <item title 3>
Recommend item:
______.

Prompt

Below are some examples.

Demonstrations

User-item interactions:
[1] <item title a>
[2] <item title b>
Recommend item:
<item title c>

......

Few-shot ICL (with demonstrations)

Zero-shot ICL (without demonstration)

Figure 6: Brief templates of few-shot ICL and zero-shot ICL
for recommendation tasks.

since additional in-context demonstrations are provided
to LLMs. Despite the reduction in performance, zero-
shot ICL entirely relieves the requirement of task-
specific recommendation datasets to form in-context
demonstrations and can be suitable for certain tasks
like conversational recommendations, where users are
not likely to provide any demonstration to LLMs.
For example, Wang et al. [92] prompt ChatGPT for
conversational recommendations with a zero-shot ICL
template containing two parts: a text description of
conversational recommendation tasks (e.g., “Recommend
items based on user queries in the dialogue.”), and a
format guideline in natural languages, such as “The
output format should be ⟨no.⟩ ⟨item title⟩.”, making the
recommendation results easier to parse.

Fig. 2.5: Three representative methods of prompting LLMs.

Silin Du (MS&E) LLMs and RS September 22, 2023 63 / 117

Prompting

1. Conventional Prompting
Liu et al. [26] prompt ChatGPT to format the review summary task in recommendations into
text summarization, with a prompt including "Write a short sentence to summarize _.".

2. In-Context Learning
I Few-shot ICL: Chat-Rec [13].
I Zero-shot ICL relieves the requirement of taskspecific recommendation datasets to form in-context

demonstrations.
Wang et al. [39] prompt ChatGPT for conversational recommendations with a zero-shot ICL template
containing two parts: a text description of conversational recommendation tasks (e.g., "Recommend
items based on user queries in the dialogue."), and a format guideline in natural languages, such as "The
output format should be <no. > <item title >.".

3. Chain-of-Thought Prompting
A simple CoT template "Please infer the preference of the user and recommend suitable items." is
proposed to guide LLMs to first infer the user’s explicit preference and then generate final
recommendations [50].

Silin Du (MS&E) LLMs and RS September 22, 2023 64 / 117

Prompt Tuning

1. Hard Prompt Tuning is to generate and update discrete text templates of prompt (e.g., in natural
language), for prompting LLMs to specific downstream tasks. (Discrete Optimization)

2. Soft Prompt Tuning employs continuous vectors as prompt (e.g., text embeddings), and opti-
mizes the prompt based on task-specific datasets. During soft prompt tuning, only the soft
prompt and minimal parameters at the input layer of LLMs will be updated.
I Wu et al. [44] apply contrastive learning to capture user representations and encode them into prompt

tokens.
I Compared to the hard prompt, the soft prompt is more feasible for tuning on continuous space but in

a cost of explainability.

Silin Du (MS&E) LLMs and RS September 22, 2023 65 / 117

Instruction Tuning

Instruction tuning can be divided into two stages

1. Instruction Generation Stage.
Zhang et al. [50] propose a recommendation-oriented instruction template, including user pref-
erences, intentions, and task forms.

2. Model Tuning Stage. Full-model / parameter-efficient tuning.
TALLRec [1] utilizes LoRA to make the instruction tuning of LLaMA more lightweight.

Silin Du (MS&E) LLMs and RS September 22, 2023 66 / 117

Future Directions I

1. Hallucination Mitigation.
High-stakes scenarios such as medical and legal.
Employing factual knowledge graphs as supplementary factual knowledge during the training
and inference stages of LLMs for RecSys is promising to mitigate the hallucination problem.

2. Trustworthy LLMs for RecSys.
I Safety & Robustness. It is crucial to ensure that the output of LLMs for recommender systems is stable

given small changes in the LLMs’ input.
Solution: safety-related prompts during RLHF, adversarial training.

I Non-discrimination& Fairness. FaiRLLM [49] and UP5 [19] explore the fairness problem in recommender
systems brought by LLMs, which focus on user-side and item generation task.

I Explainability. LLMs for RecSys can be treated as the ’black box’, complicating the process for users
trying to comprehend why a specific output or recommendation was produced.

I Privacy. LLM-based recommender systems often handle sensitive user data, including personal pref-
erences, online behaviors, and other identifiable information.

Silin Du (MS&E) LLMs and RS September 22, 2023 67 / 117

Future Directions II

3. Vertical Domain-Specific LLMs for Recommender Systems.
Medical care [48, 45], law [28], and finance [46].

4. Users & Items Indexing.
Recent research suggests that LLMs may not perform well when dealing with long texts in Rec-
Sys, as it can be difficult to effectively capture user-item interaction information in long texts.
Therefore, rather than merely using text formats to represent users and items, advanced meth-
ods for indexing users & items are desired.

5. Fine-tuning Efficiency.
The exploration of adapter tuning effects for multi-modal (i.e., both text and image) RecSys is a
potential future direction.

Silin Du (MS&E) LLMs and RS September 22, 2023 68 / 117

Future Directions III

6. Data Augmentation.
Utilize LLMs for data augmentation to booster recommendations.
RecAgnet [38] is a simulation paradigm for recommender systems based on LLMs, which in-
cludes a user module for browsing and communication on the social media, and a recommender
module for providing search or recommendation lists.

Silin Du (MS&E) LLMs and RS September 22, 2023 69 / 117

Contents

Large Language Model
Key Concepts and Recent Developments
Pre-training
Instruction Tuning
Alignment Tuning
Parameter-efficient and Memory-efficient
Model Adaptation
In-context Learning and Chain-of-thought
Prompting

Planning for Complex Task Solving
Capacity Evaluation
LLMs for Recommendations
LLMs for Recommendations
Generative Recommendation with LLMs
TALLRec
ChatGPT for Recommendations
LLM for Job Recommendation
RecruitPro
Generative Job Recommendations

Generative Recommendation I

Vagueness may also be a problem in recommendation scenarios that require precise and unique
identifiers of items.

Definition 2.1 (ID in Recommender Systems)

An ID in recommender systems is a sequence of tokens that can uniquely identify an entity, such
as a user or an item. An ID can take various forms, such as a vector embedding, a sequence of
numerical tokens, and a sequence of word tokens (including an item title, a description of the item,
or even a complete news article), as long as it can uniquely identify the entity.

I For example, a product in e-commerce platform may be assigned the ID "item 7391" and be
further represented as a sequence of tokens such as < item><_><73><91> [14].

I IDs resemble token sequences as in text, and thus naturally fit natural language environment as
well as LLM.

Silin Du (MS&E) LLMs and RS September 22, 2023 70 / 117

Generative Recommendation II

I Due to the huge number of items in real-world systems, traditional RS usually take the multi-
stage filtering paradigm.

I Advanced recommendation algorithms are not applied to all items, but only a few hundred of
items.

I An LLM itself can be the single and entire recommendation pipeline, which directly generates
the items to recommend.

Definition 2.2 (Generative Recommendation)

A generative recommender system directly generates recommendations or recommendation-related
content without the need to calculate each candidate’s ranking score one by one for sorting and
ranking.

Discriminative v.s. Generative

Silin Du (MS&E) LLMs and RS September 22, 2023 71 / 117

Generative Recommendation III

Recall

Pre-rank

Rank

Rerank

1

2

3

75

6

4

8

Item Set

...

...

Generative
Recommendation

Index Set Index Set

Token Set

0
1
2

0
1
2

1...0 1

0 0

1 0

1 1 1 2 2 2

0 2 2 0

ID

Mapping

Tokenized
Search

root

10 2

10 210 2 10 2

1

1
... ...

Traditional

Recommendation

Generate

...

ID Set

1 2 3 4 5 6 7 8 ...

1

2

3

4

5

6

7

8

...

Figure 1: Pipeline comparison between traditional recommender systems and LLM-based generative recommendation.

ing the need for multi-stage filtering. In other words, ad-
vanced LLM-based recommendation algorithms are implic-
itly applied over all items in the system to decide which items
to recommend. We term such a process generative recom-
mendation and formally define it as follows:

Definition 2 (Generative Recommendation). A generative
recommender system directly generates recommendations or
recommendation-related content without the need to calcu-
late each candidate’s ranking score one by one for sorting
and ranking.

In a broader sense, this is in line with the trend of general AI
research, which recently has been shifting from discrimina-
tive AI (such as classification and regression) to generative
AI (e.g., ChatGPT1).

With the above definitions, we first answer why RS are de-
veloping towards generative recommendation in Section 2. In
Section 3, we review ID creation approaches that could retain
collaborative information in the LLM environment. Then, we
show how typical recommendation tasks can be performed
on LLM by providing general formulations in Section 4, and
highlight opportunities in the LLM era in Section 5. At last,
we conclude our survey in Section 6.

It should be noted that our survey is different from some
recent surveys on LLM-based recommendation [Liu et al.,
2023c; Wu et al., 2023; Fan et al., 2023; Lin et al., 2023a;
Chen et al., 2023] from two perspectives: 1) our survey is
organized with generative recommendation as the key focus,
eliminating discriminative recommendation models for clar-
ity; 2) we develop a taxonomy for LLM-based recommen-
dation research with strong inspiration from the recommen-
dation community, instead of following the LLM taxonomy
from the community of natural language processing (NLP).

To sum up, this survey makes the following contributions:

• To the best of our knowledge, this is the first survey that

1https://openai.com/blog/chatgpt

systematically summarizes research on LLM-based gen-
erative recommendation. To differentiate this topic from
traditional RS, we have generalized the definition of ID
for generative recommendation.

• This survey is pragmatic as we provide the formulation
for different LLM-based recommendation tasks when
categorizing relevant research, which provides a useful
guideline for future research.

• We discuss important and promising directions to ex-
plore for LLM-based generative recommendation re-
search, which may help broaden the scope of this under-
explored research area.

2 Why Generative Recommendation
To answer why RS are developing towards generative rec-
ommendation, we first discuss problems with discriminative
recommendation. When the amount of items on a recommen-
dation platform is prohibitively large, the ranking score cal-
culation with regard to each item would be computationally
expensive. Therefore, industrial RS usually consist of multi-
ple stages to narrow down the candidate items. At the early
stage, simple models (e.g., logistic regression) or straightfor-
ward filtering strategies (e.g., feature matching) are usually
adopted to filter out less relevant items. Only in the final stage
can the relatively complex and advanced models be utilized.
This naturally causes a gap between academic research and
industrial application. In consequence, although recent rec-
ommendation models are growing more fancy and sophisti-
cated, few have been practically employed in industry.

In the era of LLM, we see a great opportunity that could
potentially bridge this gap. As both academic research and in-
dustry application may share the same backbone LLM, most
research advancements on LLM may benefit its downstream
applications. Regarding recommendation pipeline, the typi-
cal multiple stages could be advanced to one stage for gener-
ative recommendation, i.e., directly generating items to rec-

Fig. 2.6: Pipeline comparison between traditional recommender systems and LLM-based generative recommendation.

Silin Du (MS&E) LLMs and RS September 22, 2023 72 / 117

Why Generative Recommendation

Problems with discriminative recommendation.

I When the amount of items on a recommendation platform is prohibitively large, the ranking
score calculation with regard to each item would be computationally expensive.

I Only in the final stage can the relatively complex and advanced models be utilized. Although
recent recommendation models are growing more fancy and sophisticated, few have been prac-
tically employed in industry.

For generative recommendation.

I At each step of recommendation generation, the LLM can produce a vector that represents the
probability distribution on all possible ID tokens.

I After a few steps, the generated tokens can constitute a complete ID that stands for the target
item.

I We can use finite tokens to represent (almost) infinite items.
1000 tokens for representing user or item IDs. Each ID consists of 10 tokens. Then we can use these
1000 tokens to represent as many as 100010 = 1030 items.

Silin Du (MS&E) LLMs and RS September 22, 2023 73 / 117

ID Creation Methods I

Intuitively, one would consider the metadata of users and items as an alternative, such as user name
and item title.

1. When the IDs are extremely long, e.g., in the case of item description, it would be computation-
ally expensive to conduct generation.

2. It would be difficult to find an exact match in the database for a long ID.

3. Double-checking the existence of each ID would take us back to discriminative recommendation
since we need to compare it with each item in the database.

4. Although natural language is a powerful and expressive medium, it can also be vague in many
cases.

Silin Du (MS&E) LLMs and RS September 22, 2023 74 / 117

ID Creation Methods II

Three typical ID creation approaches

1. Singular Value Decomposition. [30]
I Perform truncated singular value decomposition on user-item interaction data to obtain the item em-

bedding matrix.
I After a set of operations, including normalization, noise-adding, quantization, and offset adjustment,

each item’s embedding becomes an array of integers.

2. Product Quantization. [16]
I There are in total D vector sets and each set is comprised of M centroid embeddings.
I They first encode an item’s textual description with BERT to get the item’s embedding vector, which is

further divided into D segments for quantization.
I For the i-th embedding segment, its nearest centroid embedding from the i-th vector set can be easily

found. The index of this centroid embedding then becomes the item’s i-th ID token.

3. Collaborative Indexing [20] compose an item ID with nodes on a hierarchical tree. (Laplacian
matrix, spectral clustering)

Silin Du (MS&E) LLMs and RS September 22, 2023 75 / 117

How to Do Generative Recommendation I

Construct a prompt template that describes the task and then fill the user and item information such
as their IDs in the prompt.
During the inference stage, all kinds of output (e.g., predicted item IDs) are auto-regressively gener-
ated as natural language generation.

1. Rating Prediction
I Given a user u and an item i, a recommendation model f (u, i) needs to estimate a score r̂u,i .
I u and i are two sequences of tokens. The two IDs can be filled in an instruction prompt p(u, i), e.g.,

"how would user_1234 rate item_5678".

2. Top-N Recommendation
Due to the context length limit of LLM, it is impossible to feed the model all the items.
I Straightforward recommendation uses a prompt that only contains user information (ID or user meta-

data) and asks the LLM to directly generate recommendations for this user [14].
I Selective Recommendation provides both user information and a list of candidate items in the prompt

and asks the LLM to select items for recommendation out of the candidates [30].

Silin Du (MS&E) LLMs and RS September 22, 2023 76 / 117

How to Do Generative Recommendation II

3. Sequential Recommendation
We fill the user and the item sequence in a prompt, e.g., "given user_1234’s interaction history
item_3456, ..., item_4567, item_5678, predict the next item with which the user will interact", and then
prompt LLM to generate an item ID as a prediction, e.g., "6789".

4. Explainable Recommendation
I A typical LLM-based recommendation explanation task can be natural language explanation genera-

tion.
I Using IDs alone in the prompt could be unclear as to which aspects the model should discuss in the

explanation.
I We can provide some item features f as hint words in the prompt.

5. Review Generation is similar to explanation generation, except that reviews are generally longer.

6. Review Summarization. It may be unnecessary to summarize a user’s own review.

Silin Du (MS&E) LLMs and RS September 22, 2023 77 / 117

How to Do Generative Recommendation III

7. Conversational Recommendation.
Although ChatGPT’s chatting ability is undeniably impressive, its performance on existing metrics is
not very good because they overly stress the matching between generated responses and annotated
recommendations or utterances.

8. Evaluation Protocols: RMSE, MAE, NDCG, BLEU, ROUGE, etc. More advanced and standard
metrics need to be developed.

Silin Du (MS&E) LLMs and RS September 22, 2023 78 / 117

Challenges and Opportunities

1. Hallucination

2. Bias and Fairness

3. Transparency and Explainability (Dive into the model and try to explain the internal working
mechanism of LLM.)

4. Controllability: Users may want to control the features of items or explanations.

5. Inference Efficiency

6. Multimodal Recommendation: in addition to images, videos and audios can also be generated in
an auto-regressive way.

7. Cold-start Recommendation

Silin Du (MS&E) LLMs and RS September 22, 2023 79 / 117

Contents

Large Language Model
Key Concepts and Recent Developments
Pre-training
Instruction Tuning
Alignment Tuning
Parameter-efficient and Memory-efficient
Model Adaptation
In-context Learning and Chain-of-thought
Prompting

Planning for Complex Task Solving
Capacity Evaluation
LLMs for Recommendations
LLMs for Recommendations
Generative Recommendation with LLMs
TALLRec
ChatGPT for Recommendations
LLM for Job Recommendation
RecruitPro
Generative Job Recommendations

TALLRec

I T itle: TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model
with Recommendation [1]

I Author:KEQIN BAO, JIZHI ZHANG, YANG ZHANG, WENJIE WANG, FULI FENG, XIANG-
NAN HE (USTC)

I Published: RecSys 2023

I We propose an efficient and effective Tuning framework for Aligning LLMs with Recommen-
dation, namely TALLRec.

Silin Du (MS&E) LLMs and RS September 22, 2023 80 / 117

The Ability of LLMs to Make Recommendations

2 Keqin Bao*, Jizhi Zhang*, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He

100%

Instruction
LLM e.g.
ChatGPT

Ra
tio

100%

0%

53% 47%

Ground Truth
0%

ChatGPT

Fail

LLM Fails !

Response

AU
C

0.5

0.75

Alpaca
0.46

Davinci
002 (GPT3)

0.49

ChatGPT
0.5

Davinci
003 (GPT3)

0.53

LLMs on Movie Rec

AU
C

0.5

0.75

Alpaca
0.53

Davinci
002 (GPT3)

0.46

ChatGPT
0.5

Davinci
003 (GPT3)

0.46

LLMs on Book Rec
…

Historical Sequence Like Dislike

New Item Recommend
Or

Rec Task Sample

Fig. 1. This diagram shows how we test the ability of LLMs to make recommendations. LLMs are given the task of predicting whether
a user like the next item based on their interaction history. We use In-context Learning with ChatGPT to solve this task but find
that it consistently provides a single uniform answer or refused to answer, making it unsuitable for this recommendation task. In
our experiment on Movie and Book data, we ignore samples that LLM refuse to answer and found that it performed no be�er than
random guessing. For more information on how we construct our data, please refer to the experiment section.

generalization capabilities of LLMs [33, 40, 53]. Only given appropriate instructions, these models are able to learn how
to solve unseen tasks and inspire their own knowledge to achieve a high level of performance [30]. The aforementioned
capabilities of LLM present promising opportunities to address the current challenges requiring strong generalization
and rich knowledge in the recommendation �eld. In this light, it is valuable to explore the integration of LLMs into
recommender systems, which has received limited attention in prior research.

In recent initial attempts [11, 46], achieving the target relies on In-context Learning [2], which is typically implemented
through the o�cial OpenAI API [1]. They regard the LLM as a toolformer [41] of traditional recommendation models
(such as MF [25] and LightGCN [14]), i.e., the LLM is used for re-ranking the candidate items �ltered by these models.
However, these approaches only reach a comparable performance with traditional models [11, 46]. Worse still, using
only In-context Learning may fail to make recommendations. As shown in Figure 1, we �nd that ChatGPT either refuses
to answer or believes that users will like the new item. Therefore, it is critical to further explore an appropriate way for
more e�ective leverage of LLMs in the recommendation.

We postulate that the failure of using only In-context Learning is because of two reasons: 1) LLMs may not align
well with the recommendation task due to the huge gap between language processing tasks for training LLMs and
recommendation. Besides, recommendation oriented corpus is very limited during the training phase of LLMs. 2) The
e�ect of LLMs is restricted by the underlying recommendation models, which may fail to include target items in their
candidate lists due to their limited capacity. Therefore, we consider building a Large Recommendation Language Model

(LRLM) to bridge the gap between LLMs and the recommendation task and better stimulate the recommendation
capabilities of LLMs in addition to In-context Learning.

Toward this goal, we focus on tuning LLMs with the recommendation task. Considering that instruction tuning is core
to letting the LLM learn to solve di�erent tasks and have strong generalization ability [20, 21, 36], we design a tuning
procedure to facilitate the acquisition of the recommendation task by the LLM. Elaborately, we structure our training
data in a manner akin to the instruction tuning process and subsequently train the LLM after the instruction tuning
stage. Moreover, given that LLM training necessitates a substantial amount of data, we opt to employ a lightweight
�ne-tuning approach to e�ciently adapt the LLMs to the recommendation task. To sum up, we propose an e�ective
Manuscript submitted to ACM

Fig. 2.7: LLMs are given the task of predicting whether a user like the next item based on their interaction history.

Using only In-context Learning may fail to make recommendations.

Silin Du (MS&E) LLMs and RS September 22, 2023 81 / 117

TALLRec I

4 Keqin Bao*, Jizhi Zhang*, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He

History
Sequence

New Item

Feedback

Rec Instruction : Or

Rec Input: : …
: …

Like?

Rec Output:

?

Feedback Or

LLM
Instruct
Tuning

Rec
Tuning

LLM

LoRA

Input Output

Lightweight Finetune TALLRec Framework

…

Historical Sequence Like Dislike

New Item Recommend
Or

Rec
Tuning

Samples

Fig. 2. Illustration of the TALLRec framework. In the upper le� corner, we present an instance of sequential recommendation, where
we leverage the user’s interaction history to forecast their interest in a forthcoming item. In the upper right corner, we illustrate the
approach for organizing the recommended data in such a scenario into instruction data for rec-tuning. The lower section of the figure
showcases our proposed TALLRec framework. Notably, we employ lightweight fine-tuning technology to enhance the e�iciency of
our TALLRec framework.

interaction data to predict the user’s preferences on novel items. The historical items interacted with by a user are
represented as a sequence denoted by [8C4<1, 8C4<2, ..., 8C4<=]. Each item in the sequence contains the ID and textual
information (e.g., movie titles or book titles). Additionally, the sequence is accompanied by a user feedback sequence,
denoted as [A0C41, A0C42, ..., A0C4=], where A0C4= 2 {1, 0} indicates whether the user like the 8C4<= or not, similarly for
others. In our setting, we are tasked with utilizing LLM denoted as M to construct an LRLM denoted as MA42 , which
can predict whether a new item (denoted as 8C4<=+1) will be enjoyed by a user based on the recommendation task
instructions and the user’s historical interactions. In notation, the historical sequences combined with the new item
are denoted as "Rec Input", the prediction of LRLM is represented as "Rec Output" and the "Task Instruction" for the
recommendation task is represented as "Rec Instruction".

2.2 TALLRec Framework

In this subsection, we introduce the TALLRec framework, which aims to facilitate the e�ective and e�cient alignment
of the LLM with recommendations, particularly in low GPU memory consumption settings. Speci�cally, we �rst present
the tuning methods, followed by the backbone selection.

TALLRec Tuning Stages. TALLRec comprises two tuning stages: instruction tuning and recommendation tuning
(rec-tuning). The former stage is the common training process of LLM which enhances LLM’s generalization ability,
while the latter stage emulates the pattern of instruction tuning and �ne-tunes the model for the recommendation
task. For the former, we employ the self-instruct data made available by Alpaca [44] to train our model. Speci�cally,
we utilize the conditional language modeling objective during the instruction tuning, as exempli�ed in the Alpaca
Manuscript submitted to ACM

Fig. 2.8: Illustration of the TALLRec framework.

Silin Du (MS&E) LLMs and RS September 22, 2023 82 / 117

TALLRec II

TALLRec tuning stages.

1. Instruction tuning is the common training process of LLM which enhances LLM’s generalization
ability. We employ the self-instruct data made available by Alpaca to train our model.

2. Recommendation tuning (rec-tuning) emulates the pattern of instruction tuning and fine-tunes the
model for the recommendation task.
Instruction Input: Rec Instruction + Rec Input
Instruction Output: Rec Output

Backbone: LLaMA-7B.
Lightweight Fine-tuning: LoRA.

Silin Du (MS&E) LLMs and RS September 22, 2023 83 / 117

Experiments Settings

Datasets.

I Movie from MovieLens100K.
Textual descriptions: title and director.

I Book form BookCrossing.
Textual descriptions: Book-Author and Book-Title.

Few-shot Training Setting: K training samples.
Baselines

I LLM-based methods that use In-context Learning to directly generate recommendations.

I Traditional sequential recommendations.

Silin Du (MS&E) LLMs and RS September 22, 2023 84 / 117

Performance Comparison I8 Keqin Bao*, Jizhi Zhang*, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He

Table 2. Performance comparison between conventional sequential recommendation baselines and TALLRec under di�erent few-shot
training se�ings. The reported result is the AUC multiplied by 100, with boldface indicating the highest score.

Baseline Ours

Few-shot GRU Caser SASRec DROS GRU-BERT DROS-BERT TALLRec

movie
16 49.07 49.68 50.43 50.76 50.85 50.21 67.24
64 49.87 51.06 50.48 51.54 51.65 51.71 67.48
256 52.89 54.20 52.25 54.07 53.44 53.94 71.98

book
16 48.95 49.84 49.48 49.28 50.07 50.07 56.36
64 49.64 49.72 50.06 49.13 49.64 48.98 60.39
256 49.86 49.57 50.20 49.13 49.79 50.20 64.38

we utilize the version of BERT-base released by Hugging Face4 to extract text information, set the number of GRU
layers to 4, and employ a large hidden size of 1024, aiming at aligning with BERT’s embedding size. Furthermore, given
that the predicted label is binary, we apply the Sigmoid activation function to the output of the baselines to determine
the probability of user preference. Lastly, we run all methods �ve times with di�erent random seeds and report the
averaged results.

Fig. 3. Performance comparison between LLM-based baselines and TALLRec, where TALLRec is trained on only 64 samples (i.e., in
the 64-shot training se�ing).

3.2 Performance Comparison (RQ1)

We aim to investigate the recommendation performance of various methods under the few-shot training setting, which
enables us to evaluate their ability to quickly inspire an e�ective recommendation capability with limited training
samples. To comprehensively evaluate the performance of our method, we compare our proposed method with both
traditional and recent LLM-based recommendation approaches. Our evaluation results against traditional methods are

4https://huggingface.co/bert-base-uncased

Manuscript submitted to ACM

Fig. 2.9: Performance comparison between conventional sequential recommendation baselines and TALLRec
under different few-shot training settings.

Silin Du (MS&E) LLMs and RS September 22, 2023 85 / 117

Performance Comparison II

8 Keqin Bao*, Jizhi Zhang*, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He

Table 2. Performance comparison between conventional sequential recommendation baselines and TALLRec under di�erent few-shot
training se�ings. The reported result is the AUC multiplied by 100, with boldface indicating the highest score.

Baseline Ours

Few-shot GRU Caser SASRec DROS GRU-BERT DROS-BERT TALLRec

movie
16 49.07 49.68 50.43 50.76 50.85 50.21 67.24
64 49.87 51.06 50.48 51.54 51.65 51.71 67.48
256 52.89 54.20 52.25 54.07 53.44 53.94 71.98

book
16 48.95 49.84 49.48 49.28 50.07 50.07 56.36
64 49.64 49.72 50.06 49.13 49.64 48.98 60.39
256 49.86 49.57 50.20 49.13 49.79 50.20 64.38

we utilize the version of BERT-base released by Hugging Face4 to extract text information, set the number of GRU
layers to 4, and employ a large hidden size of 1024, aiming at aligning with BERT’s embedding size. Furthermore, given
that the predicted label is binary, we apply the Sigmoid activation function to the output of the baselines to determine
the probability of user preference. Lastly, we run all methods �ve times with di�erent random seeds and report the
averaged results.

Fig. 3. Performance comparison between LLM-based baselines and TALLRec, where TALLRec is trained on only 64 samples (i.e., in
the 64-shot training se�ing).

3.2 Performance Comparison (RQ1)

We aim to investigate the recommendation performance of various methods under the few-shot training setting, which
enables us to evaluate their ability to quickly inspire an e�ective recommendation capability with limited training
samples. To comprehensively evaluate the performance of our method, we compare our proposed method with both
traditional and recent LLM-based recommendation approaches. Our evaluation results against traditional methods are

4https://huggingface.co/bert-base-uncased

Manuscript submitted to ACM

Fig. 2.10: Performance comparison between LLM-based baselines and TALLRec.

Silin Du (MS&E) LLMs and RS September 22, 2023 86 / 117

Ablation Study
TALLRec: An E�ective and E�cient Tuning Framework to Align Large Language Model with Recommendation 9

Fig. 4. Performance tendency of TALLRec’s variants and conventional sequential recommendation methods w.r.t. the number of
training samples used, ranging from 1 to 256. TALLRec has three variants: "IT" for instruction tuning only, "RT" for recommendation
tuning only, and "IT + RT" for the full version.

presented in Table 2, while the comparison against LLM-based methods is depicted in Figure 3. Based on the �gure and
table, we draw the following observations:

• Our method signi�cantly outperforms both traditional and recent LLM-based methods in the few-shot setting.
This veri�es the superiority of aligning the LLM to serve as a recommender through our TALLRec framework,
which successfully leverages the know-rich and compositional generalization capabilities of the LLM for the
recommendation.

• LLM-based methods perform similarly to random guessing with AUC values close to 0.5. However, the LRLM
trained with our TALLRec achieves signi�cant improvements over them. These results verify there is a consider-
able gap between recommendation and language tasks, and show the importance of recommendation data and
recommendation tuning in inspiring the recommendation capability of LLMs.

• Traditional methods consistently yield AUC scores around 0.5 under our few-shot training settings, indicating
that they also perform similarly to randomly guessing. This implies that traditional methods are incapable of
quickly learning the recommendation capability with limited training samples.

• GRU-BERT and DROS-BERT, which are traditional recommendation methods enhanced with pre-trained language
models (BERT), show no improvement over their initial methods and perform no better than random guessing.
However, our TALLRec method demonstrates signi�cantly superior and valid performance. These �ndings
suggest that aligning the pre-trained language model directly with the recommendation task is better suited to
unleash its potential for the recommendation, avoiding being restricted by the traditional recommenders.

3.3 Ablation Study (RQ2)

To demonstrate the e�cacy of each component in the proposed TALLRec framework, encompassing the initial instruction
tuning and recommendation tuning, we conduct a comparative analysis. Speci�cally, we compare the performance of
three variants of TALLRec, including: “IT", “RT" and “IT+RT" versions, where “IT" denotes the version only conducting
the initial instruction tuning, “RT" re�ects solely implementing the recommendation tuning, and“IT+RT" signi�es

Manuscript submitted to ACM

Fig. 2.11: Performance tendency of TALLRec’s variants and conventional sequential recommendation methods
w.r.t. the number of training samples used, ranging from 1 to 256.

IT: Instruction Tuning.
RT: Recommendation Tuning.

Silin Du (MS&E) LLMs and RS September 22, 2023 87 / 117

Cross-domain Generalization

10 Keqin Bao*, Jizhi Zhang*, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He

16 64 256
Number of Samples

0.45

0.50

0.55

0.60

0.65

0.70

0.75
A

U
C

Movie
IT + RT (book) IT +RT (movie) IT + RT (multi)

16 64 256
Number of Samples

0.45

0.50

0.55

0.60

0.65

0.70

A
U

C

Book
IT + RT (book) IT +RT (movie) IT +RT (multi)

Fig. 5. Cross-domain performance of LRLMs trained via TALLRec on book data (‘IT+RT (book)’), movie data (‘IT+RT (movie)’), and
both book and movie data (‘IT+RT (multi)’). The left figure shows the testing results on movie data, while the right figure shows the
testing results on book data.

the full version. Additionally, we vary the 𝐾 of the few-shot setting, i.e., the number of training samples utilized, to
investigate the impact of the number of training samples on these variants and baselines. We summarize the results in
Figure 4, where we have the following observations:

• Comparing "RT" and "IT+RT" with "IT", we observe that the variants with the recommendation tuning bring
distinct performance improvements. This finding verifies the effectiveness and necessity of recommendation
tuning in inspiring the LLM’s recommendation capability.

• When the number of training samples is extremely limited (≤ 128), "IT+RT" generally outperforms "RT". This
observation confirms that instruction tuning can enhance the LLM’s generalization ability to swiftly adapt to new
tasks, and combining it with recommendation tuning could further enhance the efficacy of our recommendation
tuning in scenarios with minimal training data.

• Our method exhibits the ability to inspire recommendation capabilities quickly with less than 50 training
samples, outperforming traditional recommendation methods. This finding verifies the superiority of aligning
the knowledge-rich and compositional generalization capabilities of LLMs with recommendation in few-shot
training settings, showcasing the great potential of our proposal in data-limited recommendation scenarios.

3.4 Cross-domain Generalization Analyses (RQ3)

In our previous experiments, we evaluate the proposed method solely within the same domain as the training data.
To investigate whether the Large Recommendation Language Model (LRLM) obtained by our TALLRec framework
can exhibit universal recommendation generalization ability, specifically the ability to generalize well across different
domains, we conducted further experiments with the cross-domain evaluation. Specifically, we trained three LRLMs
using the TALLRec framework with different datasets, including 1) “ IT+RT (book)", trained solely on the Book dataset;
2) “ IT+RT (movie)", trained solely on the Movie dataset; and 3) “ IT+RT (multi)", trained on both the Book and Movie
datasets. We train these models sill under multiple few-shot training settings (K=16, 64, 258), and evaluate each of them
Manuscript submitted to ACM

Fig. 2.12: Cross-domain performance of LLMs trained via TALLRec.

Models trained on Book perform worse than those trained on Movie when evaluated on the Book
dataset?

Silin Du (MS&E) LLMs and RS September 22, 2023 88 / 117

Contents

Large Language Model
Key Concepts and Recent Developments
Pre-training
Instruction Tuning
Alignment Tuning
Parameter-efficient and Memory-efficient
Model Adaptation
In-context Learning and Chain-of-thought
Prompting

Planning for Complex Task Solving
Capacity Evaluation
LLMs for Recommendations
LLMs for Recommendations
Generative Recommendation with LLMs
TALLRec
ChatGPT for Recommendations
LLM for Job Recommendation
RecruitPro
Generative Job Recommendations

ChatGPT for Recommendations

I T itle: Uncovering ChatGPT’s Capabilities in Recommender Systems [6]

I Author: Dai, Sunhao and Shao, Ninglu and Zhao, Haiyuan and Yu, Weijie and Si, Zihua and
Xu, Chen and Sun, Zhongxiang and Zhang, Xiao and Xu, Jun (RUC)

I Published: RecSys 2023

I Use ICL to triger recommendation capabilities of LLMs.

Silin Du (MS&E) LLMs and RS September 22, 2023 89 / 117

Evaluation Framework

RecSys ’23, September 18–22, 2023, Singapore, Singapore Sunhao Dai et al.

Point-wise
You are a movie recommender system now.

{{Demonstration Examples}}

Input: Here is the watching history of a user: {{User History}}. Based on this history,

please predict the user’s rating for the following item: {{Candidate item}} (1 being

lowest and 5 being highest)

Output: {{Answer}}

Pair-wise
You are a movie recommender system now.

{{Demonstration Examples}}

Input: Here is the watching history of a user: {{User History}}. Based on this history,

would this user prefer {{Candidate Item 1}} and {{Candidate Item 2}}? Answer

Choices: (A) {{Candidate Item 1}}(B) {{Candidate Item 2}}

Output: {{Answer}}

List-wise
You are a movie recommender system now.

{{Demonstration Examples}}

Input: Here is the watching history of a user: {{User History}}. Based on this history,

please rank the following candidate movies: (A) {{Candidate Item 1}} (B)

{{Candidate Item 2}} (C) {{Candidate Item 3}} (D) {{Candidate Item 4}} (E)

{{Candidate Item 5}} ……

Output: The answer index is {{Answer}}

Valid

Answer?

ExceptionMetrics

Post-process

Yes No

LLM

Domain-specific Template

<Task Description>

<Demonstration Examples>

<New Input Query>

In-context

Learning?

Add

Examples

Prompt

Pre-process

Yes No

Add

logit_bias

Figure 1: The overall evaluation framework of LLMs for recommendation. The left part demonstrates examples of how prompts
are constructed to elicit each of the three ranking capabilities. The right part outlines the process of employing LLMs to
perform different ranking tasks and conduct evaluations.

have commonly utilized three approaches to construct these rank-
ing lists: point-wise, pair-wise, and list-wise [18, 42]. Consequently,
in this paper, our specific focus is on probing the recommendation
capabilities of LLMs by aligning them with these three ranking per-
spectives. Detailed formulation of these three ranking perspectives
could be seen in Section 3.

To investigate the potential of LLMs in recommendation tasks
from these three ranking perspectives, we begin by reformulating
the three capabilities into prompts that are tailored to the specific
domain and serve as input for LLMs. We then conduct an empir-
ical analysis of ChatGPT and other popular LLMs from OpenAI
on four widely-used recommendation benchmarks from different
knowledge-rich domains. To the best of our knowledge, this is
the first empirical study to probe the capabilities of ChatGPT in
recommender systems from different ranking perspectives.

Major Findings. In summary, we have the following major
findings after empirical experiments:

• ChatGPT shows consistent advantages in all three ranking
capabilities compared with other LLMs.

• ChatGPT is good at list-wise and pair-wise ranking while less
good at point-wise ranking.

• ChatGPT can outperform traditional recommendation models
with limited training data.

• Considering the improvements with cost, we recommend list-
wise ranking for LLM-based recommenders in practice.

• ChatGPT exhibits potential in explainable recommendations
and a good understanding of item similarity.

We hope that this preliminary evaluation of ChatGPT in rec-
ommendation can provide new perspectives on both assessing the
capabilities of LLMs and utilizing LLMs, such as ChatGPT, to en-
hance recommender systems.

2 BACKGROUND
2.1 Large Language Models
Pioneering studies [3, 27] demonstrated that LLMs can perform a
diverse range of tasks without requiring gradient updates, solely
based on textual instructions or a few examples. This has drawn
significant attention towards improving the capabilities of LLMs.
Previous studies [15] have investigated the performance limits
of pre-trained language models (PLMs) by training larger mod-
els, as they have noted that augmenting the model or data size
typically enhances the model’s ability on downstream tasks, such
as Megatron-turing NLG [35] with 530B parameters, Gopher [28]
with 280B parameters, Ernie 3.0 Titan [39] with 260B parameters,
BLOOM [33] with 175B parameters, and PaLM [5] with 540B pa-
rameters. These LLMs have exhibited exceptional performance on
challenging tasks, showcasing new abilities that were not apparent
in smaller pre-trained language models. For a more comprehensive
overview of LLMs, we would recommend referring to [44].

2.2 Language Models for Recommendation
The remarkable success of pre-trained LMs in NLP community has
motivated researchers in recommender systems to explore their po-
tential in recommendation tasks. Existing works can be categorized
into two types: (i) utilizing LMs training strategies to reformu-
late and model recommendation tasks, such as BERT4Rec (masked
language modeling) [36], UnisRec (pre-train and finetune)[13], P5
(pre-train and prompting) [9] and (ii) using LMs to obtain better
representations of users and items as extra features based on textual
information [40]. More recently, some researchers have explored
leveraging off-the-shelf pre-trained LMs as recommender systems
by reformulating the recommendation tasks with prompts as multi-
token cloze tasks [25, 34, 43]. In this paper, we aim to conduct a

Fig. 2.13: The overall evaluation framework of LLMs for recommendation.

Silin Du (MS&E) LLMs and RS September 22, 2023 90 / 117

Overall PerformanceRecSys ’23, September 18–22, 2023, Singapore, Singapore Sunhao Dai et al.

Table 1: Overall performance of different models on four datasets from different domains. Bold indicates the best result for
each row and ‘_’ indicates the best result for each LLM. ‘random’ denotes recommendation based on a random policy. ‘pop’
denotes recommendation based on items’ popularity judged by the number of interactions.

Domain Metric random pop text-davinci-002 text-davinci-003 gpt-3.5-turbo (ChatGPT)
point-wise pair-wise list-wise point-wise pair-wise list-wise point-wise pair-wise list-wise

Movie
Compliance Rate - - 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.98% 100.00%

NDCG@3 0.4262 0.4761 0.5416 0.5728 0.4990 0.4618 0.5441 0.5564 0.5912 0.5827 0.5785
MRR@3 0.3667 0.4103 0.4824 0.5071 0.4363 0.3998 0.4763 0.4950 0.5260 0.5162 0.5167

Book
Compliance Rate - - 99.96% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.98% 99.80%

NDCG@3 0.4262 0.4999 0.4889 0.5298 0.4290 0.4585 0.5293 0.4597 0.5075 0.5350 0.5395
MRR@3 0.3667 0.4340 0.4247 0.4646 0.3690 0.3993 0.4665 0.4040 0.4495 0.4774 0.4800

Music
Compliance Rate - - 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.96% 99.80%

NDCG@3 0.4262 0.4094 0.4623 0.4681 0.4277 0.4732 0.5072 0.4506 0.5201 0.5439 0.5567
MRR@3 0.3667 0.3470 0.4030 0.4082 0.3750 0.4113 0.4448 0.4000 0.4605 0.4830 0.4950

News
Compliance Rate - - 99.80% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.60%

NDCG@3 0.4262 0.5444 0.4483 0.4550 0.5059 0.4880 0.4892 0.4742 0.4826 0.4991 0.5094
MRR@3 0.3667 0.4840 0.3879 0.3936 0.4497 0.4271 0.4294 0.4173 0.4246 0.4354 0.4515

Table 2: Rank of different capabilities of different LLMs-based recommendation models on four datasets from different domains.

Domain text-davinci-002 text-davinci-003 gpt-3.5-turbo (ChatGPT)
Movie pair-wise > point-wise ≫ list-wise list-wise ≈ pair-wise ≫ point-wise point-wise > pair-wise ≈ list-wise
Book pair-wise ≫ point-wise ≫ list-wise pair-wise ≫ list-wise ≈ point-wise list-wise > pair-wise ≫ point-wise
Music pair-wise > point-wise ≫ list-wise pair-wise ≫ point-wise ≫ list-wise list-wise > pair-wise ≫ point-wise
News list-wise ≫ pair-wise ≈ point-wise pair-wise ≈ point-wise > list-wise list-wise > pair-wise > point-wise

Book: We use the “Books” subset of Amazon3 dataset that con-
tains user ratings for books.

Music: We use the “CDs & Vinyl” subset of Amazon3 to conduct
experiments on the music domain.

News: We use the MIND-small4 dataset as the benchmark for
news domain.

Following the common practices [12, 21, 41], for the Movie, Book,
and Music datasets, we treat ratings above 3 as positive feedbacks
(labeled as 1) and otherwise as negative feedbacks (labeled as 0).
For the News dataset, we used the original binary feedback labels.
In the experiments, we use the titles of the items as description in
the prompt.

4.1.2 Evaluation Protocols. After processing, we random sample
500 records on each dataset for evaluation due to the expensive cost.
For all experiments, we follow the existing practice [34] and pair
one positive item with four randomly sampled negative items as the
candidate item list. We set the number of shots as 1 for pair-wise
and list-wise, and 2 for point-wise. We report top-𝐾 Normalized
Discounted Cumulative Gain (NDCG@𝐾) and Mean Reciprocal
Rank (MRR@𝐾) with 𝐾 = 3. Furthermore, considering that LLMs
may generate some illegal output, that is, results that are not in
the candidate set, we introduce the metric “Compliance Rate” to
compare the compliance rates between different models, which is
defined as the proportion of the number of valid results generated
to all test samples, i.e., Number of Valid Answers

Number of Test Samples .

3http://jmcauley.ucsd.edu/data/amazon/
4https://msnews.github.io/

4.2 RQ1: Overall Performance
Table 1 shows the results of different LLMs on four different do-
mains. We have the following observation and conclusions:

ChatGPT and GPT3.5s performed much better than the
random recommendation in almost all cases. Specifically, all
three LLMs achieve significant improvements than the random rec-
ommendation policy on four domains, e.g., average improvements
with 24.71% on the point-wise task in terms of 𝑁𝐷𝐶𝐺@3 on the
Movie Dataset. Additionally, most answers of LLMs are compliant
due to the capability of in-context learning. These results reveal
that LLMs have the potential to facilitate recommender systems.

In comparison to the text-davinci-002 and text-davinci-003,
ChatGPT exhibits better performance on almost all evalu-
ation metrics for all three ranking capabilities. For instance,
ChatGPT outperformed the other LLMs in 22 out of 24 comparisons,
including two ranking metrics, three ranking capabilities, and four
domain datasets. The only two exceptions were for point-wise rank-
ing in the news domain when compared to text-davinci-003. We
attribute ChatGPT’s strong performance to its exceptional capacity
for language understanding and reasoning, which allows it to ef-
fectively comprehend item similarity and make informed ranking
decisions.

ChatGPT performs better with list-wise ranking except in
the movie domain. On the other hand, text-davinci-002 and
text-davinci-003 perform better with pair-wise ranking in
most cases. To provide a clear comparison, we have summarized
the ranking of the three LLMs with different ranking capabilities in

Fig. 2.14: Overall performance of different models on four datasets from different domains.

Silin Du (MS&E) LLMs and RS September 22, 2023 91 / 117

Comparison with Collaborative Filtering Methods

Uncovering ChatGPT’s Capabilities in Recommender Systems RecSys ’23, September 18–22, 2023, Singapore, Singapore

Table 3: Performance of different LLMs with zero-shot and few-shot examples on Movie dataset. Bold indicates the best result
for each row and ‘_’ indicates the best result for each wise of each LLM.

random pop point-wise pair-wise list-wiseModel Metric zero-shot few-shot zero-shot few-shot zero-shot few-shot
NDCG@3 0.4264 0.4761 0.5168 0.5416 0.5253 0.5728 0.4544 0.4990text-davinci-002 MRR@3 0.3667 0.4103 0.4519 0.4824 0.4643 0.5071 0.3950 0.4363
NDCG@3 0.4264 0.4761 0.4674 0.4618 0.5249 0.5441 0.5062 0.5564text-davinci-003 MRR@3 0.3667 0.4103 0.4092 0.3998 0.4633 0.4763 0.4450 0.4950
NDCG@3 0.4264 0.4761 0.5413 0.5912 0.5833 0.5827 N/A 0.5785gpt-3.5-turbo (ChatGPT) MRR@3 0.3667 0.4103 0.4742 0.5260 0.5243 0.5162 0.5167

1% 5% 10% 20% 40% 60% 80% 100%
Percentage of Training Data

0.40

0.45

0.50

0.55

0.60

0.65

0.70

N
D

C
G

@
3

text-davinci-002
text-davinci-003
gpt-3.5-turbo (ChatGPT)
MF
NCF

(a) point-wise

1% 5% 10% 20% 40% 60% 80% 100%
Percentage of Training Data

0.40

0.45

0.50

0.55

0.60

0.65

0.70

N
D

C
G

@
3

text-davinci-002
text-davinci-003
gpt-3.5-turbo (ChatGPT)
MF
NCF

(b) pair-wise

1% 5% 10% 20% 40% 60% 80% 100%
Percentage of Training Data

0.40

0.45

0.50

0.55

0.60

0.65

0.70

N
D

C
G

@
3

text-davinci-002
text-davinci-003
gpt-3.5-turbo (ChatGPT)
MF
NCF

(c) list-wise

Figure 2: Comparison with collaborative filtering models in terms of different percentages of training data on Movie dataset.
The shaded area indicates the 95% confidence intervals of 𝑡-distribution under 5 different experiments with random seeds.

Table 2. Note that pair-wise ranking tends to be better than point-
wise ranking in most cases (11 out of 12), although it requires more
inference cost due to the need for pair-wise comparisons. We will
delve deeper into the cost analysis in RQ3.

All LLMs-based recommenders outperform the popularity
recommendantion policy in recommending movies, books,
and music, but they underperform in the news domain. This
phenomenon could be explained by the fact that news recommen-
dation relies more on popularity, while other domains are more
personalized. The speed of news delivery is another possible factor.
Due to the time-sensitive and rapidly changing nature of news rec-
ommendation, there is often insufficient interaction data available
for each news in the LLMs training corpus. Conversely, in the other
three domains, the item descriptions and interaction data are more
abundant, making LLMs works better on them. Overall, this obser-
vation suggests that while off-the-shelf LLMs-based recommenders
can be effective in many domains, they may not be suitable for
some domain and may require further exploration.

We also conduct experiments using zero-shot prompts (i.e., with-
out examples). However, with the original zero-shot prompt, we find
more than 50% of cases were invalid and challenging to evaluate. To
address this, we utilize logit_bias5 to control the output tokens. Due
to the page limitation, we provide the detailed results in the link6.

5https://platform.openai.com/docs/api-reference/completions/create#completions/
create-logit_bias
6https://github.com/rainym00d/LLM4RS/blob/main/assets/Supplementary_Material.
pdf

Overall, the results highlight the potential of LLMs as recommen-
dation systems, as they outperform random and popularity-based
policies in the zero-shot setting. Furthermore, as expected, LLMs
under few-shot settings outperform those under zero-shot settings
in most cases, demonstrating the effectiveness of few-shot prompts
in-context learning.

4.3 RQ2: Comparison with Collaborative
Filtering Models

Given that the LLMs used in the previous experiments were not
trained on recommendation data, we investigate the amount of
training data required for traditional recommendation models to
achieve performance comparable to or better than LLMs. Specifi-
cally, we chose the most representative traditional recommendation
models, Matrix Factorization (MF) [17] as well as Neural Collabo-
rative Filtering (NCF) [12], and evaluated their performance after
training on varying proportions of data. For a fair comparison, we
carefully tune the parameters of MF and NCF. We then compared
their performance to that of LLMs. All experiments are conducted 5
times on the Movie dataset, and the averaged results and their 95%
confidence intervals of 𝑁𝐷𝐶𝐺@3 were illustrated in Figure 2. As
expected, the performance of MF and NCF improves with increasing
amounts of training data. Also, we can observe that off-the-shelf
LLM-based models outperform MF and NCF when there are only a
few training data available, i.e., less than 40% for ChatGPT with all
three ranking capabilities. Note that LLM-based recommendation

Fig. 2.15: Comparison with collaborative filtering models in terms of different percentages of training data on
Movie dataset.

Silin Du (MS&E) LLMs and RS September 22, 2023 92 / 117

Performance Scaling by Cost

RecSys ’23, September 18–22, 2023, Singapore, Singapore Sunhao Dai et al.

list-wise(1x) point-wise(5x) pair-wise(10x)
Cost

0.0

0.1

0.2

0.3

Im
pr

ov
em

en
t P

er
 U

ni
t C

os
t

text-davinci-002
text-davinci-003
gpt-3.5-turbo (ChatGPT)

(a) Movie

list-wise(1x) point-wise(5x) pair-wise(10x)
Cost

0.00

0.05

0.10

0.15

0.20

0.25

Im
pr

ov
em

en
t P

er
 U

ni
t C

os
t

text-davinci-002
text-davinci-003
gpt-3.5-turbo (ChatGPT)

(b) Book

list-wise(1x) point-wise(5x) pair-wise(10x)
Cost

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Im
pr

ov
em

en
t P

er
 U

ni
t C

os
t

text-davinci-002
text-davinci-003
gpt-3.5-turbo (ChatGPT)

(c) Music

list-wise(1x) point-wise(5x) pair-wise(10x)
Cost

0.00

0.05

0.10

0.15

0.20

Im
pr

ov
em

en
t P

er
 U

ni
t C

os
t

text-davinci-002
text-davinci-003
gpt-3.5-turbo (ChatGPT)

(d) News

Figure 3: Improvement of 𝑁𝐷𝐶𝐺@3 per unit cost and five shots examples on four datasets. ‘1x 5x 10x’ denote the cost of list-wise,
point-wise, and pair-wise, respectively.

1 2 3 4 5
Number of Shots M

0.46

0.48

0.50

0.52

0.54

0.56

N
D

C
G

@
3

point-wise
pair-wise
list-wise

(a) text-davinci-002

1 2 3 4 5
Number of Shots M

0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58

N
D

C
G

@
3

point-wise
pair-wise
list-wise

(b) text-davinci-003

1 2 3 4 5
Number of Shots M

0.54

0.55

0.56

0.57

0.58

0.59

N
D

C
G

@
3

point-wise
pair-wise
list-wise

(c) gpt-3.5-turbo (ChatGPT)

Figure 4: Impact of the number of shots prompts in LLMs on Movie dataset.

models do not require training data but rather a few samples in the
prompt to help understand the recommendation task. Therefore, we
conclude that LLM-based recommendation models can be applied
in practice to mitigate the cold start problem.

4.4 RQ3: Performance Scaling by Cost
Although the LLMs have better performance on pair-wise or list-
wise ranking as presented in Table 1, we need to consider the
costs associated with these performance improvements. Specifi-
cally, we calculate the improvement per unit cost for each LLM:
𝑉𝐿𝐿𝑀 −𝑉𝑟𝑎𝑛𝑑𝑜𝑚

𝑉𝑟𝑎𝑛𝑑𝑜𝑚

𝑐𝑜𝑠𝑡𝐿𝐿𝑀
, where 𝑉𝐿𝐿𝑀 denotes the metric value of the LLM,

𝑉𝑟𝑎𝑛𝑑𝑜𝑚 denotes the metric value of random recommendation,
𝑐𝑜𝑠𝑡𝐿𝐿𝑀 denotes the cost of ranking one user’s candidate item list.
Referring to Figure 1 (left), let us define the 𝑐𝑜𝑠𝑡𝐿𝐿𝑀 . For list-wise
ranking, only one prompt input is needed to obtain LLM’s ranking
for all candidate items. For point-wise ranking, N prompt inputs are
required to obtain LLM’s ranking for all candidate items (where N
is the number of candidate items). For pair-wise ranking, 𝑁 (𝑁−1)

2
prompt inputs are required to obtain all ranking results. In our ex-
perimental settings, 𝑁 is set to 5. The costs of point-wise, pair-wise,
and list-wise ranking are denoted as 5x, 10x and 1x, respectively.
Figure 3 demonstrates the improvement per unit cost of each LLMs.
It can be found that almost all three LLMs has the best improvement
per unit cost in list-wise ranking, except text-davinci-002 on the
Book dataset. Moreover, point-wise ranking and pair-wise rank-
ing have similar improvement per unit cost. Although pair-wise

ranking may achieve better performance than point-wise ranking
in absolute metrics, the requirement to run multiple prompts for
pair-wise ranking results in additional cost. Overall, we recommend
to conduct list-wise ranking for recommendation tasks in practice,
due to its decent performance and lower cost.

4.5 RQ4: Performance Under Different Shots
Examples

Previous studies in NLP have emphasized that the number of exam-
ples 𝑀 is important for in-context learning. To assess the impact
of 𝑀 in LLMs for recommendation, we conducted experiments on
Movie dataset by varying 𝑀 from 1 to 5. Figure 4 illustrates the
performances of different 𝑀 in terms of 𝑁𝐷𝐶𝐺@3 of ChatGPT
and GPT3.5s. Surprisingly, we observe that the best results did not
always correspond to the maximum number of examples. One possi-
ble explanation is that while more example shots can provide more
context and information for LLMs to understand the recommen-
dation task, they may also introduce more noise, causing LLMs to
learn unhelpful patterns. Therefore, the optimal number of prompt
shots may depend on the specific LLM, task, and dataset.

4.6 Case Study of Exceptions
It is worth noting that the LLM may generate some invalid answers
even under few-shot in-context learning, leading to a compliance
rate may be less than 100%, as shown in Table 1. For instance, Table 4
highlights two exceptional cases of answers from ChatGPT with
pair-wise ranking, where both cases lack a correct answer because

Fig. 2.16: Improvement of NDCG@3 per unit cost and five shots examples on four datasets.

Silin Du (MS&E) LLMs and RS September 22, 2023 93 / 117

Exceptions

Uncovering ChatGPT’s Capabilities in Recommender Systems RecSys ’23, September 18–22, 2023, Singapore, Singapore

Table 4: Case Study of Exceptions. The green is the answer of ChatGPT.

Case 1 Case 2
You are a movie recommender system now. You are a book recommender system now.
{{𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠}} {{𝐸𝑥𝑎𝑚𝑝𝑙𝑒𝑠}}
Input: Here is the watching history of a user:
Aliens, E.T. the Extra-Terrestrial, Contact, The
Matrix, X-Men. Based on this history, would this
user prefer The Fox and the Hound or Steam-
boat Willie? Answer Choices: (A) The Fox and
the Hound (B) Steamboat Willie

Input: Here is the reading history of a user: The Cellist of Sarajevo,
After I’m Gone: A Novel, The Reason I Jump: The Inner Voice of a
Thirteen-Year-Old Boy with Autism, The Serpent of Venice: A Novel,
We Are All Completely Beside Ourselves: A Novel. Based on this history,
would this user prefer The Secret Life of Bees or The Help? Answer
Choices: (A) The Secret Life of Bees (B) The Help

Output: The answer index is N/A as neither
option is relevant to the user’s watching history.

Output: The answer index is N/A. It is difficult to determine the user’s
preference based on this reading history as neither book is similar in
genre or theme to the books they have read.

they are the pair of two negative samples. Surprisingly, ChatGPT
does not simply respond with ‘A’ or ‘B’ as seen in the in-context
learning examples. Instead, it recognizes that these two items are
unrelated and not similar to the user history interactions. For ex-
ample, in case 1, the user watching histories are all science fiction
movies but the answer choices are all cartoons. These responses
demonstrate that ChatGPT can understand how to recommend
based on the user interaction histories and what is the similarity
between items. However, limited by our existing evaluation meth-
ods, these answers are considered non-compliant. Therefore, we
suggest exploring additional perspectives for evaluating LLMs as
recommenders beyond learning to rank, as LLMs have the potential
to play a larger role in explainable recommendation.

5 CONCLUSION
In this paper, we conduct a preliminary evaluation for probing off-
the-shelf LLMs for recommendation from the point-wise, pair-wise,
and list-wise perspectives. Specifically, we reformulate the above
ranking capabilities into corresponding domain-aware prompts and
evaluate the performance of ChatGPT in each ranking capability
on different domains. The results on four datasets indicate the su-
periority of ChatGPT in recommendations among all three ranking
capabilities. We also observe that LLMs excel at list-wise and pair-
wise ranking, but are not proficient in point-wise ranking in most
cases. Furthermore, ChatGPT shows the potential for mitigating
the cold start problem and explainable recommendation.

ACKNOWLEDGMENTS
This work was funded by the National Key R&D Program of China
(2019YFE0198200), Beijing Outstanding Young Scientist Program
NO. BJJWZYJH012019100020098, Intelligent Social Governance In-
terdisciplinary Platform, Major Innovation & Planning Interdisci-
plinary Platform for the “Double-First Class” Initiative, Renmin
University of China. Supported by fund for building world-class
universities (disciplines) of Renmin University of China.

REFERENCES
[1] Fares Antaki, Samir Touma, Daniel Milad, Jonathan El-Khoury, and Renaud Duval.

2023. Evaluating the performance of chatgpt in ophthalmology: An analysis of
its successes and shortcomings. medRxiv (2023), 2023–01.

[2] James RA Benoit. 2023. ChatGPT for Clinical Vignette Generation, Revision, and
Evaluation. medRxiv (2023), 2023–02.

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[4] Jonathan H Choi, Kristin E Hickman, Amy Monahan, and Daniel Schwarcz. 2023.
Chatgpt goes to law school. Available at SSRN (2023).

[5] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311 (2022).

[6] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus,
Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 2022. Scaling
instruction-finetuned language models. arXiv preprint arXiv:2210.11416 (2022).

[7] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems, Boston, MA, USA, September 15-19, 2016, Shilad Sen, Werner
Geyer, Jill Freyne, and Pablo Castells (Eds.). ACM, 191–198. https://doi.org/10.
1145/2959100.2959190

[8] Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and Li Yuan. 2023. ChatLaw:
Open-Source Legal Large Language Model with Integrated External Knowledge
Bases. arXiv preprint arXiv:2306.16092 (2023).

[9] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2022.
Recommendation as language processing (rlp): A unified pretrain, personalized
prompt & predict paradigm (p5). In Proceedings of the 16th ACM Conference on
Recommender Systems. 299–315.

[10] Jyotirmoy Gope and Sanjay Kumar Jain. 2017. A survey on solving cold start
problem in recommender systems. In 2017 International Conference on Computing,
Communication and Automation (ICCCA). IEEE, 133–138.

[11] Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, Jinran Nie, Yuxuan Ding,
Jianwei Yue, and Yupeng Wu. 2023. How Close is ChatGPT to Human Experts?
Comparison Corpus, Evaluation, and Detection. arXiv preprint arXiv:2301.07597
(2023).

[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[13] Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-Rong
Wen. 2022. Towards Universal Sequence Representation Learning for Recom-
mender Systems. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 585–593.

[14] Thorsten Joachims. 2002. Optimizing Search Engines Using Clickthrough Data.
In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Edmonton, Alberta, Canada) (KDD ’02). Association
for Computing Machinery, New York, NY, USA, 133–142. https://doi.org/10.
1145/775047.775067

[15] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[16] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. arXiv preprint
arXiv:2205.11916 (2022).

[17] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[18] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations
and Trends® in Information Retrieval 3, 3 (2009), 225–331.

Fig. 2.17: Case Study of Exceptions. The green is the answer of ChatGPT.

Silin Du (MS&E) LLMs and RS September 22, 2023 94 / 117

Contents

Large Language Model
Key Concepts and Recent Developments
Pre-training
Instruction Tuning
Alignment Tuning
Parameter-efficient and Memory-efficient
Model Adaptation
In-context Learning and Chain-of-thought
Prompting

Planning for Complex Task Solving
Capacity Evaluation
LLMs for Recommendations
LLMs for Recommendations
Generative Recommendation with LLMs
TALLRec
ChatGPT for Recommendations
LLM for Job Recommendation
RecruitPro
Generative Job Recommendations

RecruitPro

I T itle: RecruitPro: A Pretrained Language Model with Skill-Aware Prompt Learning for Intel-
ligent Recruitment [10]

I Author: Fang, Chuyu and Qin, Chuan and Zhang, Qi and Yao, Kaichun and Zhang, Jingshuai
and Zhu, Hengshu and Zhuang, Fuzhen and Xiong, Hui (Beihang, Boss Zhipin, Baidu, etc.)

I Published: KDD2023
I They propose a unified representation model used for various downstream recruitment tasks.

1. The recruitment corpus is different from general corpus in terms of text content and structure.
2. A comprehensive benchmark dataset covering the primary tasks in the recruitment process is currently

lacking.
3. It is challenging to capture skill-related information in a unified representation model.

Silin Du (MS&E) LLMs and RS September 22, 2023 95 / 117

Pre-training I

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Chuyu Fang et al.

interactions data [1, 28, 43]. Indeed, the need for intelligent recruit-
ment services has risen across all industries. However, existing
studies are usually domain/task specific, which significantly hin-
ders the adaptation of models for different industries/tasks with
limited training data. Recruitment tasks typically rely on various
text data, such as job descriptions [27, 43], resumes [46], and in-
terview records [39], a unified representation model based on the
recruitment data is in great demand.

Indeed, there are several challenges for building a unified repre-
sentation model used for various downstream recruitment tasks.
First, the recruitment corpus is different from general corpus in
terms of text content and structure, leading to suboptimal perfor-
mance of the representation model pretrained on a general corpus.
Second, a comprehensive benchmark dataset covering the primary
tasks in the recruitment process is currently lacking. As a result,
the performance of the unified representations in the recruitment
domain is hard to be evaluated. Third, as there exist gaps between
pretraining tasks and downstream tasks in recruitment domain,
the downstream impacts of unified representation model can be
affected. Consequently, an effective task-adaptive method for post-
pretraining representation is crucially needed. Last, skill informa-
tion, a crucial semantic aspect in recruitment text, has been widely
confirmed for the improvement of the performance of various re-
cruitment tasks [41, 47]. However, it is challenging to capture such
information in a unified representation model.

To address the aforementioned challenges, in this paper, we
propose RecruitPro, a skill-aware prompt-based framework for
learning unified representations on the recruitment data, which is
used in various downstream recruitment tasks. Figure 1 summa-
rizes the workflow of our framework. Specifically, based on the
large-scale recruitment data from industrial partners, we identified
13 representative recruitment tasks from the recruitment process,
and constructed a benchmark dataset to systematically evaluate the
effectiveness of various aspects of intelligent recruitment. Further-
more, we have built a pretrained language representation model on
the existing recruitment data, and proposed a skill-aware prompt
learning method to reduce the gap between pretraining tasks and
downstream tasks. Our method divides prompts into skill-related
prompts and task-related prompts. Skill-related prompts are op-
timized by using a hybrid loss between text sentences and skill
sentences to ensure that prompts have a greater emphasis on skill
knowledge. And we use downstream task loss to optimize the task-
related prompt, which enables the guidance effect of skill-related
prompts to adapt to various downstream tasks. We construct the
skill extraction training dataset by way of distant supervision for
leveraging the abundance of skills in the recruitment texts. To tackle
the noise and subpar quality of the distant supervised data, we pro-
pose a noisy data filtering algorithm and a self-debiased strategy,
including incorporating pseudo-labels generated by model predic-
tions for partial annotation learning, and adding token-level entity
similarity and ratio losses. The trained skill extraction model is
used to generate high-quality skill sentences for better skill-aware
prompt learning. Finally, the extensive experiments on 13 recruit-
ment tasks demonstrate that RecruitPro can well adapt to various
tasks in the recruitment domain. In addition, in response to the
privacy leakage problem in the pretrained model, we carried out

Figure 1: The framework of the RecruitPro.

data processing strategies and conducted case studies to verify the
privacy protection results of RecruitPro.

2 RELATED WORKS
2.1 Intelligent Recruitment
Recruitment exists in all walks of life and is highly regarded by
all parties in industry and academia. Researchers have proposed
many intelligent algorithms to improve the accuracy and efficiency
of tasks in the four stages of recruitment process, i.e., identifying,
attracting, screening and hiring qualified candidates [12]. For in-
stance, to automatically identify candidates, Luo et al. predicted
resume scores by integrating skills, work experience, and other
contents in the resume through the fully connected network, fill-
ing the gap of automatic resume evaluation [24]. Moreover, some
other research explored the issue of exploiting non-textual modal
information [46] or assessing resume fraud [10] in resume under-
standing. To improve the attention of candidates, some researchers
focused on the recruitment market analysis [2, 8]. For instance, Guo
et al. developed a dynamic heterogeneous graph neural network
to forecast talent supply and demand based on companies and po-
sitions information in different periods [8]. The person-job fitting
task is a crucial aspect of the screening stage in the recruitment
process and has been a focus of research in recent years [1, 28, 48].
Shalaby et al. captured contextual and behavioral signals with a di-
rected graph of job connections for job recommendation, effectively
realizing the connection between people and posts [37]. In order to
achieve more fine-grained text representation learning, Qin et al.
learned a word-level semantic representation based on recurrent
neural network (RNN) models with attention hierarchically [28].
Besides, Bian et al. obtained the semantic interactions between job
posting and candidate resume at the sentence and global levels [1].
Continuous efforts have been made from different perspectives to
improve the performance of this fundamental task [5, 14, 29, 44, 48].
Additionally, some researchers concentrated on candidate interview

3992

Silin Du (MS&E) LLMs and RS September 22, 2023 96 / 117

Pre-training II

1. Data Preprocessing
I This dataset encompasses more than 20 major industries in the recruitment field, and includes job

descriptions, resume contents, and interview assessments.
I Eliminate the recruitment data with significantly distinct text length (too long or too short) by box plot

statistics and remove duplicate data.
I After data filtering, the final datasets for job description, resume and interview evaluation contain

926,282, 785,244 and 187,983 records, respectively.

2. Downstream Tasks
I Job Classification: to determine the corresponding job category given a piece of job description data.
I Resume Classification: to predict the appropriate category for a given resume content.
I Resume Understanding: to identify the category of each piece in resumes.
I Job Evaluation: to determine the level of a job position (e.g., senior or junior).
I Interview Result Prediction: to automatically evaluate interview assessments and make a judgment on

the interview result.
I Person-Job Fit
I Job Recommendation
I Salary Prediction

Silin Du (MS&E) LLMs and RS September 22, 2023 97 / 117

Pre-training III

I Skill Extraction

3. Model Pretraining
I Use the BPE (Byte Pair Encoding) algorithm for the English part of the text.
I First segment the input text, and then the special tokens [CLS] and [SEP] will be added to the beginning

and end of each text.

x = [[CLS], seg(text), [SEP]],

seg(text) = x1, x2, . . . , xn,

ex = Embedding(x),

hx = Transformers (ex) ,

P(y | x) = F
(

WTh[CLS] + b
)

,

I Objectives: mask language modeling and next sentence prediction.

Silin Du (MS&E) LLMs and RS September 22, 2023 98 / 117

PLM Application to Tasks

I A well-designed prompt and a [Mask] token will be as the additional input of the pretraining
model.

x = [[CLS]; prompt ; [MASK]; seg(text); [SEP]],

ex = Embedding (x),

hx = Transformers (ex) ,

P(y | x) = F
(

WTh[MASK] + b
)

,

where F is a mapping function related to the specific tasks.

I For the matching tasks, the job descriptions and resumes are split into shorter texts with fixed
lengths and then obtain a series of text representations through our model.

I The final result is predicted by using a 2-layer LSTM network with a MLP layer.

Silin Du (MS&E) LLMs and RS September 22, 2023 99 / 117

Skill-aware Prompt Learning I

Skill-Aware Prompt Design.

I Soft prompt learning and two types of prompts: skill-related and task-related prompt.

I The skill-related prompt focuses on extracting the semantic information of skill terms.

I The task-related prompt is scattered around the skill-related prompt and mask to mitigate the
differences in the various tasks.

ex =
[
e[CLS], e′ptask1

, e′pskill
, e′ptask2

, e[MASK], e′ptask3
, etext, e[SEP]

]

[
e′ptask1

, e′pskill
, e′ptask2

, e′ptask3

]
= MLP

(
BiLSTM

(
eptask1

, epskill , eptask2
, eptask3

))

Silin Du (MS&E) LLMs and RS September 22, 2023 100 / 117

Skill-aware Prompt Learning II

Auxiliary Skill Sentence Construction.

I We extract the skill terms from the input text sentences (t-sen) and concatenate all terms as new
skill sentences (s-sen).

ext-sen =
[
e′t-sen

ptask1
, e′t-sen

pskill
, e′t-sen

ptask2
, et-sen

[MASK], e′t-sen
ptask3

, et-sen

]

hpt-sen
x

= Transformer
(

e′t-sen
pskill

)

exs-sen =
[
e′s-sen

ptask1
, e′s-sen

pskill
, e′s-sen

ptask2
, es-sen

[MASK], e′s-sen
ptask3

, es-sen

]

hps-sen
x

= Transformer
(

e′s-sen
pskill

)

Silin Du (MS&E) LLMs and RS September 22, 2023 101 / 117

Skill-aware Prompt Learning III

Multiview Loss Function

I Sentence skill similarity loss

Lsim = −∑
k∈I

csim
(

h
p

t-senk
x

, hp
s-senk
x

)

I Heterogeneous skill comparison loss to account for variations in skills across different instance
classes and tasks

Lcom = −∑
k∈I

1
|P(k)| ∑

l∈P(k)
log

exp
(

csim
(

hp
s-senk
x

, hp
s-senl
x

)
/τ
)

∑o∈A(k) exp
(

c sim
(

hp
s-senk
x

, hps-seno
x

)
τ
)

where A(k) indicate the set of instances in the same batch as the k-th instance, P(k) represent
the set of instances with the same label as the k-th instance in A(k).

I Downstream task objective: MSE or Cross Entropy.

Silin Du (MS&E) LLMs and RS September 22, 2023 102 / 117

Skill-aware Prompt Learning IV
RecruitPro: A Pretrained Language Model with Skill-Aware Prompt Learning for Intelligent Recruitment KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Self-debiased Skill
 Entity Extraction

Skill-based
Similarity Objective

Skill-based
Contrastive Objective

Downstream
Task Objective

Figure 3: The framework of skill-aware prompt learning.

For NER tasks, 𝐹 uses a Softmax function,

𝑃 (𝑦 |𝑥) = Softmax(𝑊𝑇
𝑛𝑒𝑟ℎ𝑥𝑖 + 𝑏), (7)

where𝑊𝑛𝑒𝑟 is a 5 × 𝐻 matrix.
During the training of ranking task, the set of ranking candidates

for each training sample is limited within the batch. During the
testing, all possible candidates are considered for ranking. For the
matching task, as described in [26], we split the job descriptions
and resumes into shorter texts with fixed lengths and then obtain a
series of text representations through our model. The final result is
predicted by using a 2-layer LSTM [11] network with a multilayer
perceptron (MLP) layer. In addition, due to the lengthy character-
istic of resumes, the long resumes are also divided into multiple
shorter texts in the resume classification tasks. The final represen-
tation of the resume is obtained by averaging the representation
of these shorter texts. In other tasks, the texts with more than 512
tokens will be truncated directly.

4.2 Skill-aware Prompt Learning
In this section, we introduce our skill-aware prompt learning in
detail, including skill-aware prompt design, auxiliary skill sentence
construction, and multiview loss function. The framework of our
skill-aware prompt learning is shown in Figure 3.

4.2.1 Skill-Aware Prompt Design. The previous studies usually
summarize the prompts as two categories: hard prompts and soft
prompts. The hard prompts are constructed from phrases that are
already present in the vocabulary. Therefore, the model needs to
explore a discrete space and heavily rely on professional knowledge.
Differently, the soft prompts adopt continuous representations from
the embedding layer, which allows for a wider search range and
the automatic learning ability. In addition, it can not be constrained
by specific word forms and enables more comprehensive mining of
semantic level knowledge in different tasks.

In light of the importance of skill on the recruitment tasks, we
propose a skill-aware soft prompt learning to guide and enhance
the representation learning of PLM on various downstream tasks,
which makes the PLM more effectively perceive the skill semantic
information in the recruitment text.

Specifically, we delicately design two types of prompts: skill-
related prompt and task-related prompt. The skill-related prompt
focuses on extracting the semantic information of skill terms in
various recruitment texts. The task-related prompt is scattered
around the skill-related prompt and mask to mitigate the differences
in the various tasks, thereby, assisting the skill knowledge smoothly
adapt to the different tasks. Thus, we can embed the prompts into
the input and then further pass it through a two-layer bidirectional
LSTM network and an MLP layer to ensure the semantic coherence
for all prompts. Formally,

𝑒𝑥 = [𝑒 [𝐶𝐿𝑆] , 𝑒′𝑝𝑡𝑎𝑠𝑘1
, 𝑒′𝑝𝑠𝑘𝑖𝑙𝑙 , 𝑒

′
𝑝𝑡𝑎𝑠𝑘2

, 𝑒 [𝑀𝐴𝑆𝐾] , 𝑒′𝑝𝑡𝑎𝑠𝑘3
, 𝑒𝑡𝑒𝑥𝑡 , 𝑒 [𝑆𝐸𝑃]],

[𝑒′𝑝𝑡𝑎𝑠𝑘1
, 𝑒′𝑝𝑠𝑘𝑖𝑙𝑙 , 𝑒

′
𝑝𝑡𝑎𝑠𝑘2

, 𝑒′𝑝𝑡𝑎𝑠𝑘3
]

= MLP(BiLSTM(𝑒𝑝𝑡𝑎𝑠𝑘1 ,𝑒𝑝𝑠𝑘𝑖𝑙𝑙 ,𝑒𝑝𝑡𝑎𝑠𝑘2
,𝑒𝑝𝑡𝑎𝑠𝑘3

)) ,
(8)

where 𝑝𝑡𝑎𝑠𝑘𝑖 represents the task-related prompt token, 𝑝𝑠𝑘𝑖𝑙𝑙 rep-
resents the skill-related prompt token and 𝑒𝑝𝑠𝑘𝑖𝑙𝑙 is the trainable
embedding of 𝑝𝑠𝑘𝑖𝑙𝑙 .

4.2.2 Auxiliary Skill Sentence Construction. To effectively capture
the semantic information of skills in recruitment texts, in general, a
straightforward approach is to average the hidden states of all skills
as skill-related prompt. However, due to the diversity and different
importance of skills, the directly approximating representations
may weaken the model’s ability to understand skills in text.

To address this problem, we construct a skill sentence for each
input text sentence to assist the prompts to better learn the infor-
mation of the skills. Specifically, we extract the skill terms from
the input text sentences (𝑡-𝑠𝑒𝑛) and concatenate all terms as new
skill sentences (𝑠-𝑠𝑒𝑛). When we perform the representation learn-
ing on skill sentences, since the sentences only include skills, the
skill-related prompt 𝑝𝑠-𝑠𝑒𝑛𝑥 in it contains more semantic informa-
tion of skills than the prompt in text sentences 𝑝𝑡 -𝑠𝑒𝑛𝑥 . Then, we
apply multiview similarity loss constraints on the hidden states of
the skill-related prompt in the text sentences ℎ𝑝𝑡 -𝑠𝑒𝑛

𝑥
and the skill

sentences ℎ𝑝𝑠-𝑠𝑒𝑛
𝑥

, which can help the skill-aware prompt better
capture the information of skill in the text sentence.

In addition to the skill terms in the text sentence, some non-
skill words also play a crucial role in the task predictions. For
instance, some words like junior or senior are a direct sign to evalu-
ate the level of a job position and some negative words in interview
assessments are also important. Therefore, we apply the skill en-
hancement to the hidden state of 𝑝𝑠𝑘𝑖𝑙𝑙 instead of [𝑀𝐴𝑆𝐾] that can
largely preserve the influence of some important non-skill factors.

Finally, the auxiliary sentences are encoded by the Transformer
encoder, which is formulated as follows,

𝑒𝑥𝑡 -𝑠𝑒𝑛 = [𝑒′𝑡-𝑠𝑒𝑛𝑝𝑡𝑎𝑠𝑘1
, 𝑒′𝑡 -𝑠𝑒𝑛𝑝𝑠𝑘𝑖𝑙𝑙

, 𝑒′𝑡 -𝑠𝑒𝑛𝑝𝑡𝑎𝑠𝑘2
, 𝑒𝑡 -𝑠𝑒𝑛[𝑀𝐴𝑆𝐾] , 𝑒

′𝑡-𝑠𝑒𝑛
𝑝𝑡𝑎𝑠𝑘3

, 𝑒𝑡 -𝑠𝑒𝑛],
ℎ𝑝𝑡 -𝑠𝑒𝑛

𝑥
= Transformer(𝑒′𝑡 -𝑠𝑒𝑛𝑝𝑠𝑘𝑖𝑙𝑙

),
𝑒𝑥𝑠-𝑠𝑒𝑛 = [𝑒′𝑠-𝑠𝑒𝑛𝑝𝑡𝑎𝑠𝑘1

, 𝑒′𝑠-𝑠𝑒𝑛𝑝𝑠𝑘𝑖𝑙𝑙
, 𝑒′𝑠-𝑠𝑒𝑛𝑝𝑡𝑎𝑠𝑘2

, 𝑒𝑡 -𝑠𝑒𝑛[𝑀𝐴𝑆𝐾] , 𝑒
′𝑠-𝑠𝑒𝑛
𝑝𝑡𝑎𝑠𝑘3

, 𝑒𝑠-𝑠𝑒𝑛],
ℎ𝑝𝑠-𝑠𝑒𝑛

𝑥
= Transformer(𝑒′𝑠-𝑠𝑒𝑛𝑝𝑠𝑘𝑖𝑙𝑙

).

(9)

4.2.3 Multiview Loss Function. To enable the auxiliary skill sen-
tence to teach the prompts in text sentences, we propose multiview
loss functions to improve the effectiveness of skill-aware prompts

3995

Fig. 3.1: The framework of skill-aware prompt learning.

Silin Du (MS&E) LLMs and RS September 22, 2023 103 / 117

Self-debiased Skill Entity Extraction

1. Data Filtering. Distant supervised algorithm.

2. Self-debiased Designing.
I Use the BIOES tagging schema to label the data and mark the uncertain token as U.
I We incorporate a conditional random field (CRF) layer onto the pretrained language model for skill

entity extraction.
I We adopt the teacherstudent framework [17, 49] to further enhance the robustness of the model for

noisy data.
I CRF loss, entity and non-entity contrastive loss, and skill entity ratio loss

Silin Du (MS&E) LLMs and RS September 22, 2023 104 / 117

Experiments

Baselines

1. BERT

2. RoBERTa

3. ERNIE

4. Ptuning on BERT.

5. RPLM

6. RecruitPro w/o ner, RecruitPro w/o sim, Re-
cruitPro w/o com.

RecruitPro: A Pretrained Language Model with Skill-Aware Prompt Learning for Intelligent Recruitment KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 1: The statistics of all benchmark datasets.

Task Category #Class #Num
Job third classification(JD3rdClass)

Classification

591 926K
Job second classification(JD2ndClass) 101 926K

Job first classification(JD1stClass) 20 926K
Resume third classification(Re3rdClass) 87 671K

Resume second classification(Re2ndClass) 35 729K
Resume first classification(Re1stClass) 15 785K

Resume undertanding(Re-Un) 6 14K
Job evaluation(Job-Eva) 2 150K

Interview result prediction(IR-Pre) 2 188K
Person-job fit(P-J fit) Matching 2 3588K

Job recommendation(JD-Recom) Ranking - 268K
Salary prediction(Salary-Pre) Regression - 16K

Skill extraction NER 5 340K

In summary, the final loss function can be represented as:

𝐿𝑛𝑒𝑟 = 𝐿𝑐𝑟 𝑓 + 𝛼𝐿𝑟𝑒𝑝 + 𝛽𝐿𝑟𝑎𝑡 , (17)

where 𝛼 and 𝛽 are hyperparameters. The trained skill entity extrac-
tion model is utilized for skill extraction in section 4.2.2. Our method
addresses the imbalance and incompleteness issues existed in the
previous distant supervised methods, leading to the performance
improvement for the skill-aware prompt learning.

5 EXPERIMENTS
In this section, we present the evaluation metrics, baselines and
experimental results on various tasks and validate the effective-
ness of our proposed model. The statistics for the benchmark
datasets on each task are shown in Table 1. In particular, we dis-
assemble the classification tasks for both resumes and job descrip-
tions into three levels of granularity. These levels are recorded as
"JD1stClass," "JD2ndClass," "JD3rdClass," "Re1stClass," "Re2ndClass,"
and "Re3rdClass" respectively.

5.1 Evaluation Metrics
Different metrics are adopted for different tasks in our evaluation.
Concretely, in classification tasks, we apply accuracy (ACC) and F1
score to evaluate the performance of our model. For binary classifi-
cation tasks, we also add the area under the curve (AUC) metric to
provide additional insight. For matching tasks, we use the same met-
rics as classification tasks, ACC, F1, and AUC. In regression tasks,
we utilize mean absolute error (MAE) and root mean squared error
(RMSE) to evaluate the model’s performance. When it comes to
ranking tasks, we use the mean reciprocal rank (MRR) and Hits@K.
In skill extraction, we utilize recall and F1 to verify the performance.
It is noted that we use a balanced validation set and test set for all
tasks. In addition, we have conducted classification experiments
with various levels of granularity for both job classification and
resume classification, providing a comprehensive evaluation of our
approach’s effectiveness.

5.2 Baseline Methods
To verify the effectiveness of our RecruitPro, we select several
baselines, including generic PTMs and prompt-based approaches:

• BERT [3] is a pretrained language model based on the Trans-
former architecture, which has achieved outstanding perfor-
mance in a wide range of NLP tasks.

• RoBERTa [22] is a variant of BERT, using a larger corpus and
vocabulary and other modified training strategies.

• ERNIE [50] is another variant of BERT, which introduces a large-
scale knowledge map for knowledge enhancement in pretraining.

• Ptuning [21] is a method that can automatically search for
prompts in continuous space, which is applied on BERT for ex-
periments in this paper.

In addition, we introduce some variants of our RecruitPro:
• RPLM is our re-pretrained model on the recruitment corpus,

which without the skill-aware prompt learning.
• RecruitPro w/o ner. It only uses vocabulary matching for skill

extraction in text.
• RecruitPro w/o sim. It removes the skill-based similarity objec-

tive in the prompt design.
• RecruitPro w/o com. It removes the skill-based contrastive

objective in the prompt design.

5.3 Results
5.3.1 Main Results. The overall results of RecruitPro and all base-
lines on 12 tasks are reported in Table 2. The experimental results
show that the domain-specific pretraining approach has improved
the model’s performance on most tasks compared to the general
model, demonstrating its effectiveness. Furthermore, we also ob-
serve that RecruitPro is able to better adapt to various tasks. In
terms of classification tasks, RecruitPro shows an average improve-
ment of 3.25% over Bert, 2.21% over Roberta, and 1.79% over Ernie
in the metric of ACC, and 3.15% over Bert, 2.34% over Roberta,
and 2.33% over Ernie in the metric of F1. In the job matching task,
RecruitPro outperforms the most powerful general model by 1.03%.
For ranking task, RecruitPro has a 13.75% improvement compared
to the best baseline. Additionally, RecruitPro is also competitive in
the regression task. The prompt-based method, Ptuning, has a posi-
tive impact on some tasks, highlighting its guiding effect. However,
its performance is somewhat unstable, leading to poor results on
some tasks such as P-J fit and Re1stClass. Meanwhile, our proposed
skill-aware prompt learning can provide a more comprehensive and
stable improvement in the performance of the model. By comparing
the performance of RPLM and RecruitPro, it can demonstrate the
effectiveness of skill-aware prompt learning in adapting pretraining
models to various downstream tasks. Our method shows a signifi-
cant improvement in more challenging tasks such as Re2ndClass,
Re1stClass, Re-Un, Job-Recom, etc. This effectively verifies that our
method, guided by skill knowledge, enhances the model’s under-
standing of the task. And the failure to achieve a better effect on
the regression task may be due to the fact that different salaries
depend more on the mastery of skills such as how many years of
programming experience, and the difference in skills is not obvious.

5.3.2 Ablation Study. Based on the Table 2, we can obtain that as
different components of our RecruitPro are removed, the perfor-
mance degrades in most downstream tasks. Specifically, compared
to variants of RecruitPro, it has an average improvement of 1.2%
on all tasks. Moreover, we also find that RecruitPro -w/o sim per-
formance best, which may be due to the high similarity in the skill

3997

Fig. 3.2: The framework of skill-aware prompt learning.

Silin Du (MS&E) LLMs and RS September 22, 2023 105 / 117

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Chuyu Fang et al.

Table 2: Main results on 12 recruitment domain tasks.

JD3rdClass JD2ndClass JD1stClass Re3rdClass Re2ndClass Re1stClass Re-Un
ACC/% F1/% ACC/% F1/% ACC/% F1/% ACC/% F1/% ACC/% F1/% ACC/% F1/% ACC/% F1/%

BERT 67.64 66.31 75.96 75.08 82.90 82.36 29.79 28.76 34.51 33.98 45.57 44.57 79.50 79.51
Roberta 67.92 66.35 77.19 76.59 84.47 84.08 29.55 27.90 34.69 33.94 46.65 46.32 81.00 80.29
Ernie 68.02 66.65 76.96 76.03 84.73 84.22 29.52 27.43 36.04 34.91 46.45 45.60 81.00 80.74
Ptuning 67.66 66.66 76.17 76.56 85.47 84.59 29.56 28.24 36.02 34.94 45.28 44.53 80.67 80.49
RPLM 68.57 67.40 77.33 76.63 85.20 84.61 29.59 28.49 36.67 35.66 46.48 45.36 79.83 79.65
RecruitPro 68.94 67.63 77.62 76.81 85.63 84.89 30.31 28.92 37.57 36.85 47.69 47.20 82.50 82.18

- w/o ner 68.89 67.63 77.81 77.25 85.19 84.44 29.37 28.05 37.38 36.51 47.48 46.64 81.50 81.47
- w/o sim 68.59 67.12 77.26 76.57 85.40 84.40 29.61 27.97 37.58 36.84 47.53 46.59 82.17 81.85
- w/o com 68.51 67.24 77.29 76.64 85.53 84.62 29.30 27.52 37.67 37.21 47.75 46.85 81.17 80.94

Job-Eva IR-Pre P-J fit Salary-Pre JD-Recom
ACC/% F1/% AUC/% ACC/% F1/% AUC/% ACC/% F1/% AUC/% RMSE MAE MRR Hits@1 Hits@10

BERT 70.34 70.34 77.02 89.94 89.94 96.49 71.31 71.23 75.47 1.0130 0.6900 0.3328 0.1906 0.6412
Roberta 70.97 70.93 78.66 90.36 90.36 96.69 69.56 69.55 76.92 0.9745 0.7534 0.3805 0.2281 0.6925
Ernie 71.16 71.11 77.76 90.17 90.17 96.70 68.48 68.13 75.79 0.9981 0.6782 0.3607 0.2053 0.6813
Ptuning 70.97 70.91 77.90 89.90 89.79 96.45 71.11 70.96 79.33 0.9840 0.6420 0.3242 0.1729 0.6447
RPLM 71.47 71.47 79.04 90.17 90.17 96.79 71.35 71.24 75.47 0.9986 0.7436 0.4031 0.2525 0.7012
RecruitPro 71.64 71.58 79.22 90.83 90.83 96.95 72.05 72.05 80.25 0.9818 0.7084 0.4328 0.2842 0.7306

- w/o ner 71.12 71.06 77.97 90.52 90.52 96.79 71.80 71.79 79.91 0.9814 0.7217 0.4310 0.2800 0.7291
- w/o sim 71.92 71.88 79.11 90.68 90.68 96.97 71.81 71.76 80.08 0.9679 0.6949 0.4279 0.2765 0.7279
- w/o com 71.59 71.38 79.07 90.58 90.58 96.95 71.24 71.22 79.66 1.0367 0.7244 0.4247 0.2735 0.7254

Table 3: The experimental effect of RecuritPro on the NER task.

Vocabulary RecruitPro-SD-DF RecruitPro-SD RecruitPro-SDL RecruitPro

Recall/% F1/% Recall/% F1/% Recall/% F1/% Recall/% F1/% Recall/% F1/%

Whole 55.79 70.24 58.26 71.00 59.80 72.04 61.59 72.79 62.98 73.54

Technical 75.71 85.06 74.57 81.45 74.70 80.60 78.81 82.31 79.14 82.25
Product 61.79 75.24 66.14 77.01 67.31 77.84 68.61 77.89 70.73 78.96

Education and Training 71.94 83.02 71.94 81.17 72.36 80.69 74.46 82.28 74.89 82.33
Operations 51.34 66.39 56.42 69.73 59.45 71.98 61.51 72.76 62.81 73.63
Marketing 63.12 75.85 64.48 74.97 66.64 76.37 68.60 76.95 69.35 77.64

Medical 39.18 55.04 41.16 56.60 42.54 57.95 43.28 58.06 45.83 60.15
Finance 41.53 57.37 43.41 58.45 45.58 60.51 46.60 60.85 48.45 61.97

HR/Finance/Administration 42.78 58.41 45.32 60.09 46.51 61.44 47.30 61.69 49.10 63.13
Service Industry 36.48 52.64 39.70 55.39 41.63 57.32 42.40 57.73 44.23 59.10

Senior Management 51.56 66.65 53.83 67.33 56.52 69.57 56.73 69.27 58.85 70.60
Procurement/Trade 46.31 61.95 52.15 65.99 51.65 65.61 53.79 66.58 55.32 67.54

Sales 53.66 68.37 57.05 70.12 58.08 71.03 59.65 71.90 61.06 72.93
Media 58.53 72.31 60.08 72.44 62.94 74.09 66.57 75.78 66.84 75.72

Logistics 48.38 63.88 50.85 64.99 53.05 66.81 55.22 67.79 57.92 69.27
Construction 59.21 71.66 63.79 74.50 64.65 75.48 66.55 76.17 67.86 76.92

Consulting/Translation/Legal 48.68 64.34 52.89 67.24 55.53 68.74 56.61 69.23 58.23 70.16
Travel 51.83 66.90 54.55 68.72 59.35 72.40 59.41 71.85 60.39 72.25
Others 67.86 79.63 68.22 78.17 68.67 78.24 71.33 79.55 72.29 79.89

distribution among different labels in the dataset, causing a conflict
between the optimization of similarity loss and contrast loss.

5.3.3 Results for Skill Extraction. Now we turn to verify the effec-
tiveness of our self-debiased skill entity extraction, which is the
key in our skill-aware prompt learning. Table 3 shows the experi-
mental results of our model, ablation tests and vocabulary-based

matching baseline. Here, we find that there is an imbalance in
the skill tagging of vocabulary matching in different industries.
For example, the Finance, Medical, and Service Industry have low
skill extraction rates, while Technology, Education and Training,
and Marketing have relatively high skill extraction rates. Mean-
while, As shown in Table 3, we find our method can achieve better

3998

Contents

Large Language Model
Key Concepts and Recent Developments
Pre-training
Instruction Tuning
Alignment Tuning
Parameter-efficient and Memory-efficient
Model Adaptation
In-context Learning and Chain-of-thought
Prompting

Planning for Complex Task Solving
Capacity Evaluation
LLMs for Recommendations
LLMs for Recommendations
Generative Recommendation with LLMs
TALLRec
ChatGPT for Recommendations
LLM for Job Recommendation
RecruitPro
Generative Job Recommendations

Generative Job Recommendations I

I T itle: Generative Job Recommendations with Large Language Model [52]

I Author: Zheng, Zhi and Qiu, Zhaopeng and Hu, Xiao and Wu, Likang and Zhu, Hengshu and
Xiong, Hui (USTC, HKUST)

I Published: ArXiv

I They propose a novel user-centered GeneratIve job Recommendation paradigm based on LLM
(GIRL).

I Limitations of current models
1. Poor explainability.
2. Discriminative models cannot be comprehensive career AI advisors.
3. The existence of the considerable semantic gap between CVs and JDs has resulted in the underwhelm-

ing performance of traditional methods.

Silin Du (MS&E) LLMs and RS September 22, 2023 107 / 117

Generative Job Recommendations II

Definition 3.1 (Generative Job Recommendation)

Given a job seeker s with the corresponding C, the goal of generative job recommendation is to train
a generator G , which can generate a suitable JD for this user, i.e., G : C → J′.

Definition 3.2 (Generation-Enhanced Job Recommendation)

Given a job seeker s with the corresponding C, a job j with the corresponding J, and the generated
J′ , the goal of generation-enhanced job recommendation is to train a modelM, which can calculate
the matching score between s and j, i.e.,M : C, J, J′ → R.

Silin Du (MS&E) LLMs and RS September 22, 2023 108 / 117

Generative Job Recommendations III

Job Seeker Recruiter

Curriculum
Vitae

Job
Description

CV
Embedding

JD
Embedding

Predictor

𝑜𝑢𝑡𝑝𝑢𝑡	𝑠𝑐𝑜𝑟𝑒

(a) Discriminative Job Recommendation

LLM-based
Generator

Input CV

Generated JD

(b) Generative Job
Recommendation

Job Seeker Recruiter

Curriculum
Vitae

Job
Description

CV
Embedding

JD
Embedding

Predictor

𝑜𝑢𝑡𝑝𝑢𝑡	𝑠𝑐𝑜𝑟𝑒

Generated
JD

(c) Generation-Enhanced Job Recommendation

Job Seeker

Recommend

Fig. 1. Schematic diagram of three distinct job recommendation paradigms.

1) Supervised Fine-Tuning (SFT): This step aims to teach
the LLM how to generate an appropriate JD based on a
given CV. Specifically, we build a dataset consisting of
previously matched CV-JD pairs, and use the intruction-
tuning method to train the LLM generator.

2) Reward Model Training (RMT): In this step, we build
a dataset consists of matched and mismatched CV-JD
pairs, which contains the recruiter feedback for the job
seekers. Then, we train a reward model to distinguish the
matched CV-JD pairs from mismatched ones to mimic
the real-world recruiter.

3) Reinforcement Learning from Recruiter Feedback
(RLRF): In step three, we leverage Proximal Policy Op-
timization (PPO) based reinforcement learning method
to further align the LLM to the recruiter preference cap-
tured by the reward model, making the LLM generation
consider not only the preference of the job seeker but
also the practical market demands.

Finally, the major contribution of this article can be summa-
rized as follows:

• To the best of our knowledge, this is the first piece
of work which proposes an LLM-based generative job
recommendation paradigm.

• We propose a novel three-step training methodology with
reinforcement learning from recruiter feedback to train a
job description generator.

• We evaluated the quality of the generated results with the
help of GhatGPT2, and we further conducted extensive
experiments on real-world dataset.

II. RELATED WORK

In this section, we will summarize the related works in the
following three categories, respectively job recommendation,
large language models, and LLMs for recommendation.

2https://chat.openai.com/

A. Job Recommendation

In the era of burgeoning online job platforms, a variety of
novel job recommendation techniques have been introduced.
These approaches can be primarily divided into two categories,
respectively text-based methods and behavior-based methods.
For text-based methods, PJFNN [3] formulated this task as
a joint representation learning problem and utilized CNN-
based models to get the representation of job seekers and
recruiters, while APJFNN [2] enhanced the above model by
taking the abilities of job seekers into consideration and used
attention mechanisms for hierarchical ability-aware represen-
tation. IPJF [1] conceived an interpretable model to match
job seekers and recruiters in a multi-task learning framework.
For behavior-based methods, DPGNN [6] proposed to build
an interaction graph between job seekers and recruiters to
model the directed interactions. DPJF-MBS [7] proposed to
utilize memory networks to get the representation of the multi-
behavior sequences of different job seekers and recruiters.

B. Large Language Models

Large Language Models (LLMs) are language models con-
sisting of a neural network with many parameters (tens of
millions to even trillions), and trained on large quantities
of unlabeled text using self-supervised learning or semi-
supervised learning methods [8], [9]. Large language models
primarily rely on the Transformer [10] architecture, which
has become the standard deep learning technique for Natural
Language Processing (NLP). Existing LLMs can primarily be
divided into two categories, respectively discriminative LLMs
and generative LLMs. For discriminative LLMs, BERT [11]
proposed a deep bidirectional transformer architecture, and
further proposed a Masked Language Model (MLM) objective
for model pre-training. Roberta [12] further refined the training
process of BERT and achiever better performance. XLNet [13]
leveraged the permutation of the sequence order, enabling it to
learn the context of a word based on all the words before and
after it in a sentence. For generative LLMs, GPT [14] proposed

Fig. 3.3: Schematic diagram of three distinct job recommendation paradigms.

Silin Du (MS&E) LLMs and RS September 22, 2023 109 / 117

Generative Recommendation Framework I

[Education Experience]
XX University, 2014~2017
Computer Science, Master
XX University, 2010~2014
Computer Science, Bachelor

[Work Experience]
Company A, 2018~2023
Senior Engineer
XXXX

[Skills]
.. ..

[Job Position]
Senior Engineer

[Responsibility]
Develop and maintain our
web applications using
modern front-end
technologies

[Job Requirements]
5+ years of experience in
front-end development

Matched

LLM based Generator

Input CV Target JD
Prompt Template

[Education Experience]
XX University, 2010~2014
Bachelor
[Work Experience]
Company A, 2018~2023
Senior Engineer, XXXX

[Job Position]
Senior Engineer

[Responsibility]
Develop our web
applications using modern
front-end technologies

[Job Position]
Engineer

[Responsibility]
Learn from and collaborate
with senior front-end
engineers

Matched Mismatched

Reward Model

1 0

[Education Experience]
XX University, 2010~2014
Bachelor
[Work Experience]
Company A, 2018~2023
Senior Engineer, XXXX

LLM based Generator

[Job Position]
Engineer

[Responsibility]
Assist in developing and
maintaining our web
applications using modern
front-end technologies

Reward Model

0.5

Prompt

Fine-tune LLM
with supervised
learning

Construct prompt
with manual
designed template

Sample the
matched CV-JD
pairs as the
training data

Select the
positive and
negative pairs

Use the reward
model to predict the
matching scores

Train the model by
the ranking loss

Sample a new CV
to construct the
prompt data

Generate a JD by
the policy
generator

Calculate a
reward for the
generated JD

Update the policy
generator using PPO

Step 1 – Supervised Fine-tuning
Collect matched data, and train a supervised generator.

Step 2 – Reward Model Training
Collect comparison data, and train a reward model.

Step 3 - PPO
Refine the generator using reinforcement learning.

Ra
nk

in
g

lo
ss

RL
 lo

ss

Fig. 2. The training framework of the generative recommendation model.

Human:
Please generate a suitable job description based on the curriculum vitae
of the following candidate:
Basic information: The candidate is a 27-year-old female with a
bachelor's degree, majoring in Software Engineering.
personal profile:
1. She has research experience in the field of data processing and

computation, and development experience with components from
ElasticSearch, Hbase, and the Flink ecosystem.

2. She possesses strong abilities to read and understand source code,
having reviewed core source code from JDK8, Spring, Spring Boot,
and Netty.

Assistant:
Job title: Java Developer
Salary range: 25k-40k* 15
Responsibilities:
1. Support the recommendation product and algorithm departments,

rapidly iterate daily needs, complete effect analysis and continuous
improvements.

2. Track industry developments, timely introduction of external
advanced experiences.

Qualifications:
1. Proficient in Java programming basics, with excellent abilities and

experience in Java IO and multithreading programming.
2. In-depth understanding of JVM, JVM tuning experience, and

experience with distributed systems and concurrency scenarios are
preferred.

3. Proficient in applying mainstream development frameworks and
open-source systems such as Spring Boot, MyBatis, MySQL, Redis, ES,
Kafka, etc.

4. Good stress resistance, communication, learning, collaboration skills,
and a strong sense of responsibility.

5. Prior experience in recommendation/search engineering
development in Internet companies is preferred.

Fig. 3. The prompt template of training step one.

Lsft = − log Pr(C|J, T,G)

= −
|lj |∑

i=1

log Pr(vi|v<i, C, T,G),
(1)

where lj is the length of J , vi is the i-th word in J .
Pr(C|J, T,G) denotes the generation probability for J of the

generator model G given the job seeker feature C and the
prompt template T .

B. Reward Model Training

In this training step, our aim is to train a reward model U
that can predict the matching score between a CV-JD pair, i.e.,
U : (C, J) → R. The architecture of U is similar to that of
the generator model G, but it has a linear prediction head that
outputs scalar values. Additionally, the parameter scale of U
is smaller than that of G.

To train the reward model U , we collect pairwise training
data and construct a ranking task. Typically, a job seeker
applies for multiple jobs simultaneously and receives different
feedback (matched or rejected) from recruiters. Therefore, we
select a matched job J+ and a mismatched job J− for each
CV C to construct comparable pairs. We then optimize the
pairwise ranking loss to train U as follows:

Lrmt = log σ(U(C, J+)− U(C, J−)), (2)

where σ denotes the Sigmoid activation function.
This approach enables the reward model to capture the

market preferences for job seekers based on the feedback
from recruiters. Moreover, we can use the reward model
to predict the matching score between a job seeker and a
generated job description, thereby verifying the suitability of
the recommendation in advance.

C. Reinforcement Learning

In this stage, we aim to improve the alignment between
the generator G and the recruiter feedback acquired by the
reward model U through reinforcement learning. Drawing
inspiration from InstructGPT [5], we employ the Proximal
Policy Optimization (PPO) [25] algorithm to facilitate this
alignment process. Specifically, we first utilize the generator
G and the reward model U obtained from the first two training
steps to initialize the actor-critic model, comprising the actor
model Ga and critic model Uc. Next, we collect a RL training

Fig. 3.4: The training framework of the generative recommendation model.

Silin Du (MS&E) LLMs and RS September 22, 2023 110 / 117

Generative Recommendation Framework II

1. Supervised Fine-tuning
I Given a specific job seeker s with the CV C and

a job j with the JD J, we first build a prompt T
to describe the generation task.

I Then, we propose to train the generator with
the casual language model pre-training task.

[Education Experience]
XX University, 2014~2017
Computer Science, Master
XX University, 2010~2014
Computer Science, Bachelor

[Work Experience]
Company A, 2018~2023
Senior Engineer
XXXX

[Skills]
.. ..

[Job Position]
Senior Engineer

[Responsibility]
Develop and maintain our
web applications using
modern front-end
technologies

[Job Requirements]
5+ years of experience in
front-end development

Matched

LLM based Generator

Input CV Target JD
Prompt Template

[Education Experience]
XX University, 2010~2014
Bachelor
[Work Experience]
Company A, 2018~2023
Senior Engineer, XXXX

[Job Position]
Senior Engineer

[Responsibility]
Develop our web
applications using modern
front-end technologies

[Job Position]
Engineer

[Responsibility]
Learn from and collaborate
with senior front-end
engineers

Matched Mismatched

Reward Model

1 0

[Education Experience]
XX University, 2010~2014
Bachelor
[Work Experience]
Company A, 2018~2023
Senior Engineer, XXXX

LLM based Generator

[Job Position]
Engineer

[Responsibility]
Assist in developing and
maintaining our web
applications using modern
front-end technologies

Reward Model

0.5

Prompt

Fine-tune LLM
with supervised
learning

Construct prompt
with manual
designed template

Sample the
matched CV-JD
pairs as the
training data

Select the
positive and
negative pairs

Use the reward
model to predict the
matching scores

Train the model by
the ranking loss

Sample a new CV
to construct the
prompt data

Generate a JD by
the policy
generator

Calculate a
reward for the
generated JD

Update the policy
generator using PPO

Step 1 – Supervised Fine-tuning
Collect matched data, and train a supervised generator.

Step 2 – Reward Model Training
Collect comparison data, and train a reward model.

Step 3 - PPO
Refine the generator using reinforcement learning.

Ra
nk

in
g

lo
ss

RL
 lo

ss

Fig. 2. The training framework of the generative recommendation model.

Human:
Please generate a suitable job description based on the curriculum vitae
of the following candidate:
Basic information: The candidate is a 27-year-old female with a
bachelor's degree, majoring in Software Engineering.
personal profile:
1. She has research experience in the field of data processing and

computation, and development experience with components from
ElasticSearch, Hbase, and the Flink ecosystem.

2. She possesses strong abilities to read and understand source code,
having reviewed core source code from JDK8, Spring, Spring Boot,
and Netty.

Assistant:
Job title: Java Developer
Salary range: 25k-40k* 15
Responsibilities:
1. Support the recommendation product and algorithm departments,

rapidly iterate daily needs, complete effect analysis and continuous
improvements.

2. Track industry developments, timely introduction of external
advanced experiences.

Qualifications:
1. Proficient in Java programming basics, with excellent abilities and

experience in Java IO and multithreading programming.
2. In-depth understanding of JVM, JVM tuning experience, and

experience with distributed systems and concurrency scenarios are
preferred.

3. Proficient in applying mainstream development frameworks and
open-source systems such as Spring Boot, MyBatis, MySQL, Redis, ES,
Kafka, etc.

4. Good stress resistance, communication, learning, collaboration skills,
and a strong sense of responsibility.

5. Prior experience in recommendation/search engineering
development in Internet companies is preferred.

Fig. 3. The prompt template of training step one.

Lsft = − log Pr(C|J, T,G)

= −
|lj |∑

i=1

log Pr(vi|v<i, C, T,G),
(1)

where lj is the length of J , vi is the i-th word in J .
Pr(C|J, T,G) denotes the generation probability for J of the

generator model G given the job seeker feature C and the
prompt template T .

B. Reward Model Training

In this training step, our aim is to train a reward model U
that can predict the matching score between a CV-JD pair, i.e.,
U : (C, J) → R. The architecture of U is similar to that of
the generator model G, but it has a linear prediction head that
outputs scalar values. Additionally, the parameter scale of U
is smaller than that of G.

To train the reward model U , we collect pairwise training
data and construct a ranking task. Typically, a job seeker
applies for multiple jobs simultaneously and receives different
feedback (matched or rejected) from recruiters. Therefore, we
select a matched job J+ and a mismatched job J− for each
CV C to construct comparable pairs. We then optimize the
pairwise ranking loss to train U as follows:

Lrmt = log σ(U(C, J+)− U(C, J−)), (2)

where σ denotes the Sigmoid activation function.
This approach enables the reward model to capture the

market preferences for job seekers based on the feedback
from recruiters. Moreover, we can use the reward model
to predict the matching score between a job seeker and a
generated job description, thereby verifying the suitability of
the recommendation in advance.

C. Reinforcement Learning

In this stage, we aim to improve the alignment between
the generator G and the recruiter feedback acquired by the
reward model U through reinforcement learning. Drawing
inspiration from InstructGPT [5], we employ the Proximal
Policy Optimization (PPO) [25] algorithm to facilitate this
alignment process. Specifically, we first utilize the generator
G and the reward model U obtained from the first two training
steps to initialize the actor-critic model, comprising the actor
model Ga and critic model Uc. Next, we collect a RL training

Silin Du (MS&E) LLMs and RS September 22, 2023 111 / 117

Generative Recommendation Framework III

2. Reward Model Training
I A reward model U that can predict the matching score between a CV-JD pair, i.e., U : (C, J)→ R.
I The architecture of U is similar to that of the generator model G , but it has a linear prediction head

that outputs scalar values.

3. Reinforcement Learning: Proximal Policy Optimization.

Silin Du (MS&E) LLMs and RS September 22, 2023 112 / 117

Generation-enhanced Recommendation Framework

1. Basic Recommendation Model
I Given a job seeker s with the corresponding CV C, and a job j with the corresponding JD J, we first

need to get the text embedding based on a text encoder as:

c = Encoder(C), j = Encoder(J)

I Then we get the matching score by MLP predictor score = MLP([c; j]) or dot predictor score = c · j
2. Enhanced Recommendation Model

I Get the text embedding of the generated JD J′

j′ = Encoder(J′)

I MLP predictor: score = MLP([c; j; j′])
I Dot predictor:

c′ = MLP([c; j′])

score = c′ · j

Silin Du (MS&E) LLMs and RS September 22, 2023 113 / 117

Experiment Settings I
leverage the generated results provided by LLMs for enhanced
job recommendation.

A. Basic Recommendation Model

As shown in Figure 1 (a), in the paradigm of discriminative
recommendation based on text matching, given a job seeker
s with the corresponding CV C, and a job j with the
corresponding JD J , we first need to get the text embedding
based on a text encoder as:

c = Encoder(C), j = Encoder(J). (9)

Then, we can get the matching score by feeding the above
embedding vectors to a predictor. In this paper, we studied
two different predictors, respectively MLP predictor as:

score = MLP ([c; j]), (10)

where [;] is the concatenation of two vectors, and dot predictor
as follows:

score = c · j, (11)

where · calculates the dot product of two vectors.

B. Enhanced Recommendation Model

As shown in Figure 1 (c), in the paradigm of generation-
enhanced job recommendation, we can get the generated JD
J ′ based on the CV C and the LLM-based generator G. Then,
we can also get the text embedding of J ′ as:

j′ = Encoder(J ′). (12)

After that, we propose two different ways to utilize j′ for
enhancing the recommendation task corresponding to different
predictor. Specifically, for the MLP predictor, we propose to
calculate the matching score as:

score = MLP ([c; j; j′]). (13)

For the dot predictor, we first get the enhanced job seeker
embedding as:

c′ = MLP ([c; j′]). (14)

Then, we can calculate the dot product as:

score = c′ · j. (15)

VI. EXPERIMENTS

In this section, we first describe the dataset used in this
paper. Then, we propose to evaluate our approch from two
different perspectives. We further present some discussions
and case studies on generative job recommendation. The
experiments are mainly designed to answer the research ques-
tions as follows:

• RQ1: Can our LLM-based generator generate high-
quality JDs?

• RQ2: Can the generated results enhance the performance
of discriminative job recommendation?

• RQ3: Whether the specially designed training methods
for the LLM effective?

• RQ4: How do different settings influence the effective-
ness of our model?

TABLE I
STATISTICS OF THE DATASETS.

Description Number
of data for supervised fine-tuning 153,006
of data for reward model training 303,929
of data for reinforcement learning 37,600

of data in training set for enhanced recommendation 37,158
of data in validation set for enhanced recommendation 4,542

of data in test set for enhanced recommendation 6,300

A. Data Description and Preprocessing

The real-world datasets used in this paper comes from
one of the largest online recruitment platform in China.
In our datasets, each job seeker and recruiter is de-linked
from the production system by securely hashing with one-
time salt mapping. In this platform, each job seeker has a
Curriculum Vitae (CV), encompassing their basic demographic
information, educational background, and work experience
among other details. Meanwhile, each job is associated with
a Job Description (JD), detailing the responsibilities of the
role, the compensation package, and so on. A variety of
interaction types may occur between job seekers and jobs,
such as browsing, applying, and matched. In this paper, we
categorize these interactions into two major types, respectively
matched and mismatched.

To train a large language model for generative job recom-
mendation, we built the following three dataset:

• Supervised Fine-tuning Dataset: This dataset contains
multiple matched CV-JD pairs, ranging from Apr. 1,
2023, to Apr. 30, 2023.

• Reward Model Training Dataset: This dataset contains
multiple matched and mismatched CV-JD pairs, ranging
from May. 1, 2023 to May. 7, 2023.

• Reinforcement Learning Dataset: This dataset contains
CVs only, ranging from May. 8, 2023, to May. 10, 2023.

Furthermore, to evaluate whether the generated results can
enhance the performance of traditional discriminative models,
we built the following dataset:

• Enhanced Recommendation Dataset: This dataset con-
tains multiple matched and mismatched CV-JD pairs,
ranging from May. 8, 2023 to May. 31, 2023.

Detailed statistics of the above datasets are shown in Table I.

B. Evaluation and Baselines

In this paper, we propose to evaluate the effectiveness of our
GIRL approach from the following two perspectives. Firstly,
with the assistance of ChatGPT, we evaluated the quality of
the generated results from semantic perspective. Secondly,
we evaluated whether the generated results can enhance the
performance of discriminative recommendation.

For generation quality evaluation, we first selected several
baseline methods to compare with our method as:

• GIRL: This is the method proposed in this paper which
utilized both SFT and RL for fine-tuning.

• GIRL-SFT: This method is a simplified variant GIRL
which only utilized SFT for fine-tuning.

Fig. 3.5: Statistics of the Datasets.

1. Generation Quality (evaluated by ChatGPT).
I GIRL, GIRL-SFT and Other LLMs (BELLE-7b, BLOOMZ-7b, and LLAMA-7b)
I ChatGPT outputs "Win", "Tie", and "Lose"

2. Performance Comparison
I Base: choose BERT as the text encoder.
I GIRL-SFT, GIRL

Silin Du (MS&E) LLMs and RS September 22, 2023 114 / 117

Results I

TABLE III
OVERALL PERFORMANCE OF DIFFERENT MODELS ON THE

DISCRIMINATIVE JOB RECOMMENDATION.

Predictor Model AUC(↑) LogLoss(↓)

MLP
Base 0.6349 0.4043

GIRL-SFT 0.6438(+1.4%) 0.3973(+1.7%)
GIRL 0.6476(+2.0%) 0.3908(+3.3%)

Dot
Base 0.6258 0.4964

GIRL-SFT 0.6291(+0.5%) 0.3688(+20.3%)
GIRL 0.6436(+2.8%) 0.3567(+28.1%)

1 2 3 4 5
Genreation Number

0.62

0.63

0.64

0.65

AU
C

GIRL-SFT

GIRL

Fig. 5. Performance of different models with different generation number.

compare GIRL with all the baseline methods, and the results
are shown in Table III. From the results, we can get the
following observations:

1) Both GIRL and GIRL-SFT outperform the Base model,
demonstrating that the JDs generated by fine-tuned
LLMs can effectively enhance the performance of dis-
criminative job recommendation.

2) GIRL surpasses GIRL-SFT on all the evaluation metrics.
The rationale behind this is that through the reward
model training stage, our reward model encapsulates
extensive real-world experiences. By incorporating this
knowledge into the LLMs through reinforcement learn-
ing, the generated JDs are enabled to capture job-
seeker traits precisely and align with the preferences of
recruiters better.

E. Discussion on Generation Number (RQ4)

In Section V we studied how to utilize the generated JD for
enhancing discriminative recommendation, where we focus on
utilizing a single JD. Indeed, owing to the inherent randomness
in the text generation process, given a specific CV, the LLM
is capable of generating multiple distinct JDs. In this section,
we will explore how to utilize multiple generated JDs and
discuss the influence of the number of JDs on the model
performance. Specifically, given multiple JDs, we first get the
text embedding of each JD by Equation 12. Then, we use
mean pooling to fuse these JD embedding, and calculate the
matching score following Equation 13. The results are shown

TABLE IV
PERFORMANCE OF DIFFERENT MODELS ON THE DISCRIMINATIVE JOB

RECOMMENDATION UNDER COLD-START CONDITION.

Predictor Model AUC(↑) LogLoss(↓)

MLP
Base 0.6198 0.4270

GIRL-SFT 0.6293(+1.5%) 0.4154(+2.8%)
GIRL 0.6347(+2.4%) 0.4229(+1.0%)

Dot
Base 0.6136 0.5233

GIRL-SFT 0.6231(+1.5%) 0.3827(+26.9%)
GIRL 0.6457(+5.2%) 0.3673(+29.8%)

in Figure 5. Note that we employed only 75% of the data
in Section VI-D to accelerate the computation process. From
the results, we can find that as the number of generated JDs
increases, the model performance initially improves before
subsequently declining. This suggests that moderately increas-
ing the number of generated JDs can further enhance model
performance. However, a larger number of JDs also implies
a substantial increase in computational cost. Moreover, the
performance of GIRL surpasses that of GIRL-SFT in most
cases, which once again affirms the superiority of the RL-
based fine-tuning method proposed in this paper.

F. Discussion on Cold Start (RQ4)

In this section, we will explore the performance of differ-
ent models under cold-start condition on the discriminative
job recommendation task. Specifically, cold start condition
refers to recommending jobs for job seekers who have not
appeared in the training set. The results are shown in Table IV.
Compared with Table III, we can find that the performance
improvement of our models in cold-start conditions is more
significant. This indicates that the JDs generated by LLMs can
more effectively assist discriminative recommendation models
in enhancing performance under cold-start conditions.

G. Case Study

In this section, we will conduct a case study of the generated
results from different models for the same CV, and the results
are shown in Figure 6. From the results we can find that the
vanilla BELLE model without finetuning fails to generate job
JDs in a standard format, and the generated JDs present vague
descriptions of job-related skills and requirements, providing
inadequate guidance for job seekers. Moreover, we can find
that after being trained through reinforcement learning, the
GIRL model generates results that are more standardized in
format, more detailed and comprehensive in content, and more
aligned with the individual circumstances of job seekers. The
above results demonstrate the effectiveness of the three-stage
training method proposed in this paper.

VII. CONCLUSION

Reflecting on the recent advancements in the field of Large
Language Models, this study presented a novel generative job
recommendation paradigm named GeneratIve job Recommen-
dation based on Large language model (GIRL). Specifically,

TABLE III
OVERALL PERFORMANCE OF DIFFERENT MODELS ON THE

DISCRIMINATIVE JOB RECOMMENDATION.

Predictor Model AUC(↑) LogLoss(↓)

MLP
Base 0.6349 0.4043

GIRL-SFT 0.6438(+1.4%) 0.3973(+1.7%)
GIRL 0.6476(+2.0%) 0.3908(+3.3%)

Dot
Base 0.6258 0.4964

GIRL-SFT 0.6291(+0.5%) 0.3688(+20.3%)
GIRL 0.6436(+2.8%) 0.3567(+28.1%)

1 2 3 4 5
Genreation Number

0.62

0.63

0.64

0.65

AU
C

GIRL-SFT

GIRL

Fig. 5. Performance of different models with different generation number.

compare GIRL with all the baseline methods, and the results
are shown in Table III. From the results, we can get the
following observations:

1) Both GIRL and GIRL-SFT outperform the Base model,
demonstrating that the JDs generated by fine-tuned
LLMs can effectively enhance the performance of dis-
criminative job recommendation.

2) GIRL surpasses GIRL-SFT on all the evaluation metrics.
The rationale behind this is that through the reward
model training stage, our reward model encapsulates
extensive real-world experiences. By incorporating this
knowledge into the LLMs through reinforcement learn-
ing, the generated JDs are enabled to capture job-
seeker traits precisely and align with the preferences of
recruiters better.

E. Discussion on Generation Number (RQ4)

In Section V we studied how to utilize the generated JD for
enhancing discriminative recommendation, where we focus on
utilizing a single JD. Indeed, owing to the inherent randomness
in the text generation process, given a specific CV, the LLM
is capable of generating multiple distinct JDs. In this section,
we will explore how to utilize multiple generated JDs and
discuss the influence of the number of JDs on the model
performance. Specifically, given multiple JDs, we first get the
text embedding of each JD by Equation 12. Then, we use
mean pooling to fuse these JD embedding, and calculate the
matching score following Equation 13. The results are shown

TABLE IV
PERFORMANCE OF DIFFERENT MODELS ON THE DISCRIMINATIVE JOB

RECOMMENDATION UNDER COLD-START CONDITION.

Predictor Model AUC(↑) LogLoss(↓)

MLP
Base 0.6198 0.4270

GIRL-SFT 0.6293(+1.5%) 0.4154(+2.8%)
GIRL 0.6347(+2.4%) 0.4229(+1.0%)

Dot
Base 0.6136 0.5233

GIRL-SFT 0.6231(+1.5%) 0.3827(+26.9%)
GIRL 0.6457(+5.2%) 0.3673(+29.8%)

in Figure 5. Note that we employed only 75% of the data
in Section VI-D to accelerate the computation process. From
the results, we can find that as the number of generated JDs
increases, the model performance initially improves before
subsequently declining. This suggests that moderately increas-
ing the number of generated JDs can further enhance model
performance. However, a larger number of JDs also implies
a substantial increase in computational cost. Moreover, the
performance of GIRL surpasses that of GIRL-SFT in most
cases, which once again affirms the superiority of the RL-
based fine-tuning method proposed in this paper.

F. Discussion on Cold Start (RQ4)

In this section, we will explore the performance of differ-
ent models under cold-start condition on the discriminative
job recommendation task. Specifically, cold start condition
refers to recommending jobs for job seekers who have not
appeared in the training set. The results are shown in Table IV.
Compared with Table III, we can find that the performance
improvement of our models in cold-start conditions is more
significant. This indicates that the JDs generated by LLMs can
more effectively assist discriminative recommendation models
in enhancing performance under cold-start conditions.

G. Case Study

In this section, we will conduct a case study of the generated
results from different models for the same CV, and the results
are shown in Figure 6. From the results we can find that the
vanilla BELLE model without finetuning fails to generate job
JDs in a standard format, and the generated JDs present vague
descriptions of job-related skills and requirements, providing
inadequate guidance for job seekers. Moreover, we can find
that after being trained through reinforcement learning, the
GIRL model generates results that are more standardized in
format, more detailed and comprehensive in content, and more
aligned with the individual circumstances of job seekers. The
above results demonstrate the effectiveness of the three-stage
training method proposed in this paper.

VII. CONCLUSION

Reflecting on the recent advancements in the field of Large
Language Models, this study presented a novel generative job
recommendation paradigm named GeneratIve job Recommen-
dation based on Large language model (GIRL). Specifically,

Fig. 3.6: Overall performance of different models (left) and results under cold-start conditions (right).

Silin Du (MS&E) LLMs and RS September 22, 2023 115 / 117

Results II

TABLE III
OVERALL PERFORMANCE OF DIFFERENT MODELS ON THE

DISCRIMINATIVE JOB RECOMMENDATION.

Predictor Model AUC(↑) LogLoss(↓)

MLP
Base 0.6349 0.4043

GIRL-SFT 0.6438(+1.4%) 0.3973(+1.7%)
GIRL 0.6476(+2.0%) 0.3908(+3.3%)

Dot
Base 0.6258 0.4964

GIRL-SFT 0.6291(+0.5%) 0.3688(+20.3%)
GIRL 0.6436(+2.8%) 0.3567(+28.1%)

1 2 3 4 5
Genreation Number

0.62

0.63

0.64

0.65

AU
C

GIRL-SFT

GIRL

Fig. 5. Performance of different models with different generation number.

compare GIRL with all the baseline methods, and the results
are shown in Table III. From the results, we can get the
following observations:

1) Both GIRL and GIRL-SFT outperform the Base model,
demonstrating that the JDs generated by fine-tuned
LLMs can effectively enhance the performance of dis-
criminative job recommendation.

2) GIRL surpasses GIRL-SFT on all the evaluation metrics.
The rationale behind this is that through the reward
model training stage, our reward model encapsulates
extensive real-world experiences. By incorporating this
knowledge into the LLMs through reinforcement learn-
ing, the generated JDs are enabled to capture job-
seeker traits precisely and align with the preferences of
recruiters better.

E. Discussion on Generation Number (RQ4)

In Section V we studied how to utilize the generated JD for
enhancing discriminative recommendation, where we focus on
utilizing a single JD. Indeed, owing to the inherent randomness
in the text generation process, given a specific CV, the LLM
is capable of generating multiple distinct JDs. In this section,
we will explore how to utilize multiple generated JDs and
discuss the influence of the number of JDs on the model
performance. Specifically, given multiple JDs, we first get the
text embedding of each JD by Equation 12. Then, we use
mean pooling to fuse these JD embedding, and calculate the
matching score following Equation 13. The results are shown

TABLE IV
PERFORMANCE OF DIFFERENT MODELS ON THE DISCRIMINATIVE JOB

RECOMMENDATION UNDER COLD-START CONDITION.

Predictor Model AUC(↑) LogLoss(↓)

MLP
Base 0.6198 0.4270

GIRL-SFT 0.6293(+1.5%) 0.4154(+2.8%)
GIRL 0.6347(+2.4%) 0.4229(+1.0%)

Dot
Base 0.6136 0.5233

GIRL-SFT 0.6231(+1.5%) 0.3827(+26.9%)
GIRL 0.6457(+5.2%) 0.3673(+29.8%)

in Figure 5. Note that we employed only 75% of the data
in Section VI-D to accelerate the computation process. From
the results, we can find that as the number of generated JDs
increases, the model performance initially improves before
subsequently declining. This suggests that moderately increas-
ing the number of generated JDs can further enhance model
performance. However, a larger number of JDs also implies
a substantial increase in computational cost. Moreover, the
performance of GIRL surpasses that of GIRL-SFT in most
cases, which once again affirms the superiority of the RL-
based fine-tuning method proposed in this paper.

F. Discussion on Cold Start (RQ4)

In this section, we will explore the performance of differ-
ent models under cold-start condition on the discriminative
job recommendation task. Specifically, cold start condition
refers to recommending jobs for job seekers who have not
appeared in the training set. The results are shown in Table IV.
Compared with Table III, we can find that the performance
improvement of our models in cold-start conditions is more
significant. This indicates that the JDs generated by LLMs can
more effectively assist discriminative recommendation models
in enhancing performance under cold-start conditions.

G. Case Study

In this section, we will conduct a case study of the generated
results from different models for the same CV, and the results
are shown in Figure 6. From the results we can find that the
vanilla BELLE model without finetuning fails to generate job
JDs in a standard format, and the generated JDs present vague
descriptions of job-related skills and requirements, providing
inadequate guidance for job seekers. Moreover, we can find
that after being trained through reinforcement learning, the
GIRL model generates results that are more standardized in
format, more detailed and comprehensive in content, and more
aligned with the individual circumstances of job seekers. The
above results demonstrate the effectiveness of the three-stage
training method proposed in this paper.

VII. CONCLUSION

Reflecting on the recent advancements in the field of Large
Language Models, this study presented a novel generative job
recommendation paradigm named GeneratIve job Recommen-
dation based on Large language model (GIRL). Specifically,

Fig. 3.7: Performance of different models with different generation number.

Silin Du (MS&E) LLMs and RS September 22, 2023 116 / 117

Summary I

1. Model Utilization. How to design better prompts? Multi-turn Prompting?

2. Safety & Alignment. RLHF heavily relies on high-quality human feedback data from professional
labelers.

3. LLM for RecSys. It has attracted a lot of research, but there is still no obvious conclusion on how
to effectively use LLM in RecSys.

4. Controllability.

5. LLM for Explanations.

6. LLM for Agents.

Silin Du (MS&E) LLMs and RS September 22, 2023 117 / 117

Reference I

[1] BAO, K., ZHANG, J., ZHANG, Y., WANG, W., FENG, F., AND HE, X.
Tallrec: An effective and efficient tuning framework to align large language model with recommendation.
arXiv preprint arXiv:2305.00447 (2023).

[2] BROWN, T., MANN, B., RYDER, N., SUBBIAH, M., KAPLAN, J. D., DHARIWAL, P., NEELAKANTAN, A., SHYAM, P., SASTRY, G., ASKELL, A., ET AL.
Language models are few-shot learners.
Advances in neural information processing systems 33 (2020), 1877–1901.

[3] CHOWDHERY, A., NARANG, S., DEVLIN, J., BOSMA, M., MISHRA, G., ROBERTS, A., BARHAM, P., CHUNG, H. W., SUTTON, C., GEHRMANN, S., ET AL.
Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311 (2022).

[4] CHUNG, H. W., HOU, L., LONGPRE, S., ZOPH, B., TAY, Y., FEDUS, W., LI, E., WANG, X., DEHGHANI, M., BRAHMA, S., ET AL.
Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416 (2022).

[5] CUI, Z., MA, J., ZHOU, C., ZHOU, J., AND YANG, H.
M6-rec: Generative pretrained language models are open-ended recommender systems.
arXiv preprint arXiv:2205.08084 (2022).

[6] DAI, S., SHAO, N., ZHAO, H., YU, W., SI, Z., XU, C., SUN, Z., ZHANG, X., AND XU, J.
Uncovering chatgpt’s capabilities in recommender systems.
arXiv preprint arXiv:2305.02182 (2023).

[7] DETTMERS, T., PAGNONI, A., HOLTZMAN, A., AND ZETTLEMOYER, L.
Qlora: Efficient finetuning of quantized llms.
arXiv preprint arXiv:2305.14314 (2023).

[8] FAN, W., ZHAO, Z., LI, J., LIU, Y., MEI, X., WANG, Y., TANG, J., AND LI, Q.
Recommender systems in the era of large language models (llms).
arXiv preprint arXiv:2307.02046 (2023).

Reference II

[9] FAN, Z., LIU, Z., HEINECKE, S., ZHANG, J., WANG, H., XIONG, C., AND YU, P. S.
Zero-shot item-based recommendation via multi-task product knowledge graph pre-training.
arXiv preprint arXiv:2305.07633 (2023).

[10] FANG, C., QIN, C., ZHANG, Q., YAO, K., ZHANG, J., ZHU, H., ZHUANG, F., AND XIONG, H.
Recruitpro: A pretrained language model with skill-aware prompt learning for intelligent recruitment.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2023), pp. 3991–4002.

[11] FRIEDMAN, L., AHUJA, S., ALLEN, D., TAN, T., SIDAHMED, H., LONG, C., XIE, J., SCHUBINER, G., PATEL, A., LARA, H., ET AL.
Leveraging large language models in conversational recommender systems.
arXiv preprint arXiv:2305.07961 (2023).

[12] FU, Y., PENG, H., AND KHOT, T.
How does gpt obtain its ability? tracing emergent abilities of language models to their sources.
Yao Fu’s Notion (2022).

[13] GAO, Y., SHENG, T., XIANG, Y., XIONG, Y., WANG, H., AND ZHANG, J.
Chat-rec: Towards interactive and explainable llms-augmented recommender system.
arXiv preprint arXiv:2303.14524 (2023).

[14] GENG, S., LIU, S., FU, Z., GE, Y., AND ZHANG, Y.
Recommendation as language processing (rlp): A unified pretrain, personalized prompt & predict paradigm (p5).
In Proceedings of the 16th ACM Conference on Recommender Systems (2022), pp. 299–315.

[15] GHOLAMI, A., KIM, S., DONG, Z., YAO, Z., MAHONEY, M. W., AND KEUTZER, K.
A survey of quantization methods for efficient neural network inference.
In Low-Power Computer Vision. Chapman and Hall/CRC, 2022, pp. 291–326.

[16] HOU, Y., HE, Z., MCAULEY, J., AND ZHAO, W. X.
Learning vector-quantized item representation for transferable sequential recommenders.
In Proceedings of the ACM Web Conference 2023 (2023), pp. 1162–1171.

Reference III

[17] HOULSBY, N., GIURGIU, A., JASTRZEBSKI, S., MORRONE, B., DE LAROUSSILHE, Q., GESMUNDO, A., ATTARIYAN, M., AND GELLY, S.
Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning (2019), PMLR, pp. 2790–2799.

[18] HU, E. J., WALLIS, P., ALLEN-ZHU, Z., LI, Y., WANG, S., WANG, L., CHEN, W., ET AL.
Lora: Low-rank adaptation of large language models.
In International Conference on Learning Representations (2021).

[19] HUA, W., GE, Y., XU, S., JI, J., AND ZHANG, Y.
Up5: Unbiased foundation model for fairness-aware recommendation.
arXiv preprint arXiv:2305.12090 (2023).

[20] HUA, W., XU, S., GE, Y., AND ZHANG, Y.
How to index item ids for recommendation foundation models.
arXiv preprint arXiv:2305.06569 (2023).

[21] KOJIMA, T., GU, S. S., REID, M., MATSUO, Y., AND IWASAWA, Y.
Large language models are zero-shot reasoners.
Advances in neural information processing systems 35 (2022), 22199–22213.

[22] LESTER, B., AL-RFOU, R., AND CONSTANT, N.
The power of scale for parameter-efficient prompt tuning.
In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (2021), pp. 3045–3059.

[23] LI, L., ZHANG, Y., LIU, D., AND CHEN, L.
Large language models for generative recommendation: A survey and visionary discussions.
arXiv preprint arXiv:2309.01157 (2023).

Reference IV

[24] LI, X. L., AND LIANG, P.
Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers) (2021), pp. 4582–4597.

[25] LIU, B., JIANG, Y., ZHANG, X., LIU, Q., ZHANG, S., BISWAS, J., AND STONE, P.
Llm+ p: Empowering large language models with optimal planning proficiency.
arXiv preprint arXiv:2304.11477 (2023).

[26] LIU, J., LIU, C., LV, R., ZHOU, K., AND ZHANG, Y.
Is chatgpt a good recommender? a preliminary study.
arXiv preprint arXiv:2304.10149 (2023).

[27] LIU, J., SHEN, D., ZHANG, Y., DOLAN, W. B., CARIN, L., AND CHEN, W.
What makes good in-context examples for gpt-3?
In Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures (2022), pp. 100–114.

[28] NGUYEN, H.-T.
A brief report on lawgpt 1.0: A virtual legal assistant based on gpt-3.
arXiv preprint arXiv:2302.05729 (2023).

[29] OUYANG, L., WU, J., JIANG, X., ALMEIDA, D., WAINWRIGHT, C. L., MISHKIN, P., ZHANG, C., AGARWAL, S., SLAMA, K., RAY, A., ET AL.
Training language models to follow instructions with human feedback, 2022.
URL https://arxiv. org/abs/2203.02155 13 (2022).

[30] PETROV, A. V., AND MACDONALD, C.
Generative sequential recommendation with gptrec.
arXiv preprint arXiv:2306.11114 (2023).

Reference V

[31] RASLEY, J., RAJBHANDARI, S., RUWASE, O., AND HE, Y.
Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2020), pp. 3505–3506.

[32] SCHICK, T., DWIVEDI-YU, J., DESSÌ, R., RAILEANU, R., LOMELI, M., ZETTLEMOYER, L., CANCEDDA, N., AND SCIALOM, T.
Toolformer: Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761 (2023).

[33] SHEN, T., LI, J., BOUADJENEK, M. R., MAI, Z., AND SANNER, S.
Towards understanding and mitigating unintended biases in language model-driven conversational recommendation.
Information Processing & Management 60, 1 (2023), 103139.

[34] SHIN, K., KWAK, H., KIM, K.-M., KIM, M., PARK, Y.-J., JEONG, J., AND JUNG, S.
One4all user representation for recommender systems in e-commerce.
arXiv preprint arXiv:2106.00573 (2021).

[35] SHINN, N., CASSANO, F., LABASH, B., GOPINATH, A., NARASIMHAN, K., AND YAO, S.
Reflexion: Language agents with verbal reinforcement learning.
arXiv preprint arXiv:2303.11366 (2023).

[36] SHOEYBI, M., PATWARY, M., PURI, R., LEGRESLEY, P., CASPER, J., AND CATANZARO, B.
Megatron-lm: Training multi-billion parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053 (2019).

[37] SINGHAL, K., AZIZI, S., TU, T., MAHDAVI, S. S., WEI, J., CHUNG, H. W., SCALES, N., TANWANI, A., COLE-LEWIS, H., PFOHL, S., ET AL.
Large language models encode clinical knowledge.
Nature (2023), 1–9.

[38] WANG, L., ZHANG, J., CHEN, X., LIN, Y., SONG, R., ZHAO, W. X., AND WEN, J.-R.
Recagent: A novel simulation paradigm for recommender systems.
arXiv preprint arXiv:2306.02552 (2023).

Reference VI

[39] WANG, X., TANG, X., ZHAO, W. X., WANG, J., AND WEN, J.-R.
Rethinking the evaluation for conversational recommendation in the era of large language models.
arXiv preprint arXiv:2305.13112 (2023).

[40] WEI, J., TAY, Y., BOMMASANI, R., RAFFEL, C., ZOPH, B., BORGEAUD, S., YOGATAMA, D., BOSMA, M., ZHOU, D., METZLER, D., ET AL.
Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682 (2022).

[41] WEI, J., WANG, X., SCHUURMANS, D., BOSMA, M., XIA, F., CHI, E., LE, Q. V., ZHOU, D., ET AL.
Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems 35 (2022), 24824–24837.

[42] WU, C., WU, F., QI, T., LIAN, J., HUANG, Y., AND XIE, X.
Ptum: Pre-training user model from unlabeled user behaviors via self-supervision.
arXiv preprint arXiv:2010.01494 (2020).

[43] WU, L., QIU, Z., ZHENG, Z., ZHU, H., AND CHEN, E.
Exploring large language model for graph data understanding in online job recommendations.
arXiv preprint arXiv:2307.05722 (2023).

[44] WU, Y., XIE, R., ZHU, Y., ZHUANG, F., ZHANG, X., LIN, L., AND HE, Q.
Personalized prompts for sequential recommendation.
arXiv preprint arXiv:2205.09666 (2022).

[45] XIONG, H., WANG, S., ZHU, Y., ZHAO, Z., LIU, Y., WANG, Q., AND SHEN, D.
Doctorglm: Fine-tuning your chinese doctor is not a herculean task.
arXiv preprint arXiv:2304.01097 (2023).

[46] YANG, H., LIU, X.-Y., AND WANG, C. D.
Fingpt: Open-source financial large language models.
arXiv preprint arXiv:2306.06031 (2023).

Reference VII

[47] YAO, S., YU, D., ZHAO, J., SHAFRAN, I., GRIFFITHS, T. L., CAO, Y., AND NARASIMHAN, K.
Tree of thoughts: Deliberate problem solving with large language models.
arXiv preprint arXiv:2305.10601 (2023).

[48] ZHANG, H., CHEN, J., JIANG, F., YU, F., CHEN, Z., LI, J., CHEN, G., WU, X., ZHANG, Z., XIAO, Q., ET AL.
Huatuogpt, towards taming language model to be a doctor.
arXiv preprint arXiv:2305.15075 (2023).

[49] ZHANG, J., BAO, K., ZHANG, Y., WANG, W., FENG, F., AND HE, X.
Is chatgpt fair for recommendation? evaluating fairness in large language model recommendation.
arXiv preprint arXiv:2305.07609 (2023).

[50] ZHANG, J., XIE, R., HOU, Y., ZHAO, W. X., LIN, L., AND WEN, J.-R.
Recommendation as instruction following: A large language model empowered recommendation approach.
arXiv preprint arXiv:2305.07001 (2023).

[51] ZHAO, W. X., ZHOU, K., LI, J., TANG, T., WANG, X., HOU, Y., MIN, Y., ZHANG, B., ZHANG, J., DONG, Z., ET AL.
A survey of large language models.
arXiv preprint arXiv:2303.18223 (2023).

[52] ZHENG, Z., QIU, Z., HU, X., WU, L., ZHU, H., AND XIONG, H.
Generative job recommendations with large language model.
arXiv preprint arXiv:2307.02157 (2023).

	Large Language Model
	Key Concepts and Recent Developments
	Pre-training
	Instruction Tuning
	Alignment Tuning
	Parameter-efficient and Memory-efficient Model Adaptation
	In-context Learning and Chain-of-thought Prompting
	Planning for Complex Task Solving
	Capacity Evaluation

	LLMs for Recommendations
	LLMs for Recommendations
	Generative Recommendation with LLMs
	TALLRec
	ChatGPT for Recommendations

	LLM for Job Recommendation
	RecruitPro
	Generative Job Recommendations

	Appendix
	Reference

