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Lecture Overview

In this slide, we first introduce the basic ideas in causal inference, including
» Potential outcome framework.
» Causal graph.
» Structural causal model.
Then, we focus on Causal Machine Learning, including
» Causal supervised learning.
» Causal generative modeling.
» Causal explanations.

» Causal fairness.

» Causal reinforcement learning.
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Potential Outcomes

» T: the random variable for treatment and is binary in most cases.

» Y: the random variable for the outcome of interest.

» X: covariates.
Let’s consider the scenario where you are unhappy. And you are considering whether or not to get a
dog to help make you happy.

> You will still be happy if you get a dog.

» If you don’t get a dog, you will remain unhappy.

In this scenario, your outcome Y is happiness
Y =1:happy, Y =0:unhappy

The treatment T is whether or not to get a dog.
»> We denote by Y(1) the potential outcome of happiness you would observe if you were to get a
dog (T =1).
» Similarly, we can define Y/(0).
» In this scenario, Y(1) =1,Y(0) = 0.
P — R



Individual Treatment Effects

» More generally, the potential outcome Y(t) denotes the outcome would be if the treatment is ¢.

\4

A potential outcome Y (t) is distinct from the observed outcome Y in that not all potential out-
comes are observed.

In the previous scenarios, there was only a single individual (unit) in the whole population.
Generally, there are many units in the population of interest.

The treatment, covariates, and outcome of the iy, unit: T;, X;, Y;.

vV vyYyy

We can define the individual treatment effect (ITE) for unit i:

7 £ Yi(1) - Y;(0)

v

Y (t) is a random variable because different units will have different potential outcomes.

» Y;(t) is usually treated as non-random.
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The Fundamental Problem of Causal Inference

Holland (1986)

It is impossible to observe all potential outcomes of the same unit.

vV vYyy

Same object or person at a different time is a different unit.
We cannot observe both Y;(0) and Y;(1).
This is known as the fundamental problem of causal inference.

This problem is unique to causal inference because, in causal inference, we care about making
causal claims, which are defined in terms of potential outcomes.

In machine learning, we often only care about predicting the observed outcome Y, so there is no
need for potential outcomes.

The potential outcomes that you do not (and cannot) observe are known as counterfactials be-

cause they are counter to fact (reality).
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Average Treatment Effect I

» We get the noerage treatment effect (ATE) by taking an average over the ITEs:
T2 E[Y;(1) - Y;(0)] = E[Y(1) - Y(0)]

where the average is over the units i.
» How to compute the ATE?

Consider the following table as the whole population of interest

i

QU1 = W N =
_ O O Rk Rk Ol
_ m, O O R o |
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Average Treatment Effect II (&) SEM

AEGEER

» The fundamental problem of causal inference is actually a missing data problem.

» Association difference: E[Y | T =1] —E[Y | T =0].
ATE = E[Y(1) — Y(0)] = E[Y(1)] — E[Y(0)] Z E[Y | T=1] —E[Y | T = 0]

» Unfortunately, this is not true in general.

> If it were, that would mean that causation is simply association.

» They are not equal due to confounding,.
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Ignorability and Exchangeability I

What assumption(s) would make it so that the ATE is simply the associational difference?
»> What makes it valid to calculate the ATE by taking the average of the Y(0) column, ignoring

the question marks, and subtracting that from the average of the Y (1) column, ignoring the
question marks?

» This ignoring of the question marks (missing data) is known as ignorability.

> Assuming ignorability is like assuming units were randomly assigned to different treatment.

Assumption 1.1 (Ignorability / Exchangeability)

(Y(0),Y(1) LT
T




Ignorability and Exchangeability II

» This assumption allows us to reduce the ATE to the associational difference:
E[Y(1)] - E[Y(0)] = E[Y(1) | T =1] —E[Y(0) | T = 0] (1.1)
=E[Y|T=1-E[Y|T=0] (1.2)
The ignorability assumption is used in Equation (1.1).

> Another perspective on this assumption is that of exchangeability.

» Exchangeability means that the treatment groups are exchangeable in the sense that if they were
swapped, they would observe the same outcomes.

» Formally, this assumption means
E[Y(1) | T=01=E[Y(1)|T=1], E[Y(0)|T=0=E[Y(0)|T=1]
which implies that

E[Y(1) | T = =E[Y(1)], E[Y(0)|T=t=E[Y(0)]

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 10/176



Identifiability

»> We have leveraged Assumption 1.1 to identify causal effects.

> To identify a causal effect is to reduce a causal expression (potential outcome notations) to a
purely statistical expression (such as T, X, and expectations).

> This means that we can calculate the causal effect from just the observational distribution
P(X,T,Y).

Definition 1.1 (Identifiability)

A causal quantity (e.g. E[Y(t)]) is identifiable if we can compute it from a purely statistical
quantity (e.g. E[Y | t]).
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Conditional Exchangeability and Unconfoundedness I

» In general, it is completely unrealistic to assume that the treatment groups are exchangeable.
» However, if we control for relevant variables by conditioning, then maybe the subgroups will

be exchangeable.

Definition 1.2 (Conditional Exchangeability / Unconfoundedness)

(Y(0),Y(1)) L T| X

Unconfoundedness is the main assumption necessary for causal inference.

E[Y(1) = Y(0) | X] = E[Y(1) | X] - E[Y(0) | X] 1.3)
—E[Y(1) | T=1X] —E[Y(0) | T =0,X] (1.4)
—E[Y|T=1X]—E[Y|T=0X] (1.5)

Silin Du (MS&E)
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Conditional Exchangeability and Unconfoundedness II

We get Equation (1.4) by conditional exchangeability.
E[Y(1) = Y(0)] = ExE[Y(1) = Y(0) | X] (1.6)
=Ex[E[Y |T=1X]-E[Y|T=0,X] 1.7)
Theorem 1.1 (Adjustment Formula)

Given the assumptions of unconfoundedness, overlap, consistency, and no interference, we can
identify the average treatment effect:

E[Y(1) — Y(0)] = Ex[E[Y | T=1,X] —E[Y | T =0, X]]
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Positivity /Overlap I

Positivity is the condition that all subgroups of the data with different covariates have some proba-
bility of receiving any value of treatment.

Assumption 1.2 (Positivity / Overlap / Common Support)
For all values of covariates x present in the population of interest (i.e. x such that P(X = x) > 0),

0-P(T=1|X=x)-1

> If we have a positivity violation, then we will be conditioning on a zero probability event.

» There will be some value of x with with non-zero probability for which P(T =1 | X =x) =0
orP(T=0|X=x)=0.
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Positivity /Overlap 11

» For discrete covariates and outcome, we have

E[Y(1) = Y(0) | X]

=Ex[E[Y |T=1X]-E[Y|T=0,X]]

=) P(X=x) (ZyP(Y—y |IT=1,X=x)-) yP(Y=y]| T_O,X_x))
X Y Y

- - P(Y=yT=1X=x) P(Y=y,T=0X=x) ,
=LP(X=x) (;yP(T_ 1| X = 0)P(X =x) _;yP(T:O X = x)P(X_x)) (Bayes”rule)

> If P(T =1]| X = x) = 0 for any level of covariates x with non-zero probability, then there is
division by zero in the first term, so Ex[E[Y | T =1, X] — E[Y | T = 0, X] is undefined.
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Positivity /Overlap III

» Another name for positivity is over/ap. The intuition for this name is that we want the covariate
distribution of the treatment group to overlap with the covariate distribution of the control
group.

» Positivity-Unconfoundedness Tradeoff. Although conditioning on more covariates could lead
to a higher chance of satisfying unconfoundedness, it can lead to a higher chance of violating
positivity.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 16 /176



AEGEER

No Interference, Consistency, and SUTVA I

»> No interference means that my outcome is unaffected by anyone else’s treatment. Rather, my
outcome is only a function of my own treatment.

Assumption 1.3 (No Interference)

Yi(tll s b1, b, ti+lr s t?l) = Yl(tl)

» Consistency is the assumption that the outcome we observe Y is actually the potential outcome
under the observed treatment T.

» Consistency encompasses the assumption that is sometimes referred to as no multiple versions
of treatment.
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No Interference, Consistency, and SUTVA II

Assumption 1.4 (Consistency)

If the treatment is T, then the observed outcome Y is the potential outcome under treatment T.
Formally,

T=t=Y=Y(t)
equivalentlt,

Y = Y(T)

» It's commonly to see the stable unit-treatment value assumption (SUTVA) in the literature.
> SUTVA is satisfied if unit (individual) /s outcome is simply a function of unit i’s treatment.

» Therefore, SUTVA is a combination of consistency and no interference.
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Revisit the Adjustment Formula

All assumptions are needed
» Unconfoundedness (Assumption 1.2)
» Positivity (Assumption 1.2)
» No interference (Assumption 1.3)
» Consistency (Assumption 1.4)
Proof of Theorem 1.1.

E[Y(1) - Y(0)] = E[Y(1)] — E[Y(0)] (linearity of expectation)
=Ex[E[Y(1) | X] —E[Y(0) | X]] (law of iterated expectations)
=Ex[E[Y(1) |T=1X]-E[Y(0) | T =0,X]] (unconfoundedness and positivity)
= Ex[E[Y | T=1,X] —E[Y | T =0,X]] (consistency)
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Statistics Terminology

» An estimand is the quantity that we want to estimate. For example, Ex[E[Y | T = 1, X] — E[Y |
T = 0, X]] is the estimand we care about for estimating the ATE.

An estimate (none) is an approximation of some estimand, which we get using data.
An estimator is a function that maps a dataset to an estimate of the estimand.

To estimate (verb) is to feed data into an estimator to get an estimate.

vV vYvyy

The process that we will use to go from data + estimand to a concrete number is known as

estimation.

v

Causal estimand refers to any estimand that contains a potential outcome.

> Identification refers to the process of moving from a causal estimand to an equivalent statistical
estimand.

> Estimation refers to the process of moving from a statistical estimand to an estimate.
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Graph Terminology I

» A graph is a collection of nodes (also called vertices) and edges that connect the nodes.
> We will denote the parents of a node X with pa(X).

» A path in a graph is any sequence of adjacent nodes, regardless of the direction of the edges that
join them.

» A directed path is a path that consists of directed edges that are all directed in the same direction.

v

If there is a directed path that starts at node X and ends at node Y, then X is an ancestor of Y,
and Y is a descendant of X.

We will denote descendants of X by de(X).
A directed path from some node X back to itself is known as a cy/cle.

If there are no cycles in a directed graph, the graph is known as a directed acyclic graph (DAG).

vy vy vy

We mostly focus on DAGs.
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Bayesian Network I

> Bayesian networks are the main probabilistic graphical model that causal graphical models
(causal Bayesian networks) inherit most of their properties from.

> In general, we can use the chain rule of probability to factorize any distribution:
P(xl, Sy xn) = P(xl) I_IP (xi ‘ Xi—1seeer xl)
i

However, it would take an exponential number of parameters to model the distribution.
» Only model local dependencies.

» Given a probability distribution and a corresponding DAG, we can formalize the specification
of independencies with the local Markov assumption:

Assumption 2.1 (Local Markov Assumption)

Given its parents in the DAG, a node X is independent of all its non-descendants.
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Bayesian Network II

» Consider an example with 4 variables.

> We can factorize any P such that
P(x1,x2,x3,x4) = P(x1)P(x2 | x1)P(x3 | x2,x1)P(x4 | x3,%2,%1)

» If P is Markov with respect to the graph in Figure 2.1, then we can simplify

P(xl,XZ,X3,X4) = P(Xl)P(X2 ‘ Xl)P(X3 | Xz,xl)P(X4 ‘ X3)

Fig. 2.1: Four node DAG
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Bayesian Network III

» The main consequences of the local Markov assumption:

Definition 2.1 (Bayesian Network Factorization)

Given a probability distribution P and a DAG G, P factorizes according to G if

P(x1, .., X HPxZ|pa

» The Bayesian network factorization is also known as the chain rule for Bayesian networks or
Markov compatibility.

» The local Markov assumption does not even tell us that if X and Y are adjacent in the DAG, then
X and Y are dependent.

»> We will generally assume a slightly stronger assumption than the local Markov assumption.
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Bayesian Network IV

Assumption 2.2 (Minimality Assumption)

1. Given its parents in the DAG, a node X is independent of all its non-descendants (Assump-
tion 2.1)

2. Adjacent nodes in the DAG are dependent.

The minimality assumption is equivalent to saying that we can’t remove any more edges from the

graph. In a sense, every edge is active.
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Causal Graphs

Definition 2.2 (What is a cause?)

A variable X is said to be a cause of a variable Y if Y can change in response to changes in X.

Assumption 2.3 ((Strict) Causal Edges Assumption)

In a directed graph, every parent is a direct cause of all its children.

> If we fix all of the direct causes of Y, then changing any other cause of Y won’t induce any
changesin Y.
> This assumption is strict in the sense that every edge is active, just like in DAGs that satisfy

minimality.

» When we add the causal edges assumption, directed paths in the DAG take on a very special

meaning; they correspond to causation.
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Two Nodes

» Flow of association: whether any two nodes in a graph are associated (statistically dependent)
or not associated (statistically independent).

» Two unconnected nodes.
P(x1,x2) = P(x1)P(x2)

> In contrast, if there is an edge between the two nodes then the two nodes are associated.

& ®

(a) Two unconnected nodes (b) Two connected nodes

Fig. 2.2: Two nodes in a graph

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 28 /176



Chain and Fork I

Chain and forks share the same set of dependencies.

In both structures, X; and X, are dependent, and X, and X3 are dependent.
X7 and X3 are associated in both chains and forks.

In the chain, association flows from X; to X3 along the path X; — X, — Xa.
In the fork, association flows from X;j to X3 along the path X; + X, — X3.

vVvyvyVvVYyVyvyy

In general, the flow of association is symmetric.

===
- i~ 3

(a) Chain (b) Fork
Fig. 2.3: Chain and fork with flow of association drawn as a dashed red arc.
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Chain and Fork II

» When we condition on Xj in both graphs, it blocks the flow of association from X; to X3, i.e.,

X1 1L X3 | Xo.
» This is because of the local Markov assumption; each variable can locally depend on only its
parents.
o
(a) Chain (b) Fork

Fig. 2.4: Chain and fork with association blocked by conditioning on X,.
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Chain and Fork III

» For chains, we can factorize P(x1, xp, x3) as follows:
P(x1,x2,x3) = P(x1)P(x2 | x1)P(x3 | x2)
Then by the Bayes’ rule, we have

Px1, %2, %3)
P(x2)
_ P(x1)P(x2 | x1)P(x3 | x)
P(x2)
_ P(x,x3)
7 ﬁp(ﬁfa | x2)

=P(x1 | x2)P(x3 | x2)

P(x1,x3 | xp) =

» The flow of association is symmetric, whereas the ow of causation is not.

» Under the causal edges assumption (Assumption 2.3), causation only flows in a single direction.

Causation only flows along directed paths.
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Immorality and Colliders I

» We have an immorality when we have a child whose two parents do not have an edge connect-
ing them.

» The child is known as a collider.

N
N
\\I

(a) Immorality (b) Immorality with association (c) Immorality with association un-
blocked by a collider. blocked by conditioning on the col-
lider.

Fig. 2.5: Immorality
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Immorality and Colliders II
> Inanimmorality, X; L X3.
P(x1,x3) = ;P(xl,xz,x:%)
% 22 P(x1)P(x3)P(xy | x1,x3)
= P(x1)P(x3) ;P(xz | x1,%3)
= P(x1)P(x3)

» Conditioning on a collider can turn a blocked path into an unblocked path.
» This is sometimes referred to as sclection bias.

» Conditioning on descendants of a collider also induces association in between the parents of the

collider.
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d-separation I DA

Definition 2.3 (Blocked Path)
A path between nodes X and Y is blocked by a (potentially empty) conditioning set Z if either of
the following is true:
1. Along the path, there is a chain --- — W — --- orafork --- < W — ..., where W is
conditioned on (W € Z).

2. There is a collider W, on the path that is not conditioned on (W ¢ Z) and none of its descen-
dants are conditioned on (de(W) € Z).

Definition 2.4 (d-Separation)
Two (sets of) nodes X and Y are d-separated by a set of nodes Z if all of the paths between (any
node in) X and (any node in) Y are blocked by Z.
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d-separation II

> Similarly, if there exists at least one path between X and Y that is unblocked, then we say that X
and Y are d-connected.

> d-separation is such an important concept because it implies conditional independence.

» X 1gY|Z (X LpY|Z)denotes that X and Y are d-separated in the graph G (the distribution
P) when conditioning on Z.

Theorem 2.1

Given that P is Markov with respect to G (satisfies the local Markov assumption, Assumption 2.1),
if X and Y are d-separated in G conditioned on Z , then X and Y are independent in P conditioned
on Z. We can write this succinctly as follows:

XlgY|Z=X1pY|Z @.1)

v
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d-separation III

> We call Equation ( 2.1) the global Markov assumption.
» Theorem 2.1 tells us that the local Markov assumption implies the global Markov assumption.

» The local Markov assumption, global Markov assumption, and the Bayesian network factoriza-
tion are all equivalent.

» We will use Markoov assumption to refer to these concepts as a group, or we will simply say P is
Markov with respect to G.
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Flow of Association and Causation

> We refer to the flow of association along directed paths as causal association.

» A common type of non-causal association that makes total association not causation is cornfoud-
ing association.

> d-separation implies association is causation.

confounding association

- o -

causal association

Fig. 2.6: Causal graph depicting an example of how confounding association and causal association flow.
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do-operator I

» In the regular notation for probability, we have conditioning, but that isn’t the same as interven-
ing.
» Conditioning on T = ¢ just means that we are restricting our focus to the subset of the popula-

tion to those who received treatment t.

» In contrast, an intervention would be to take the whole population and give everyone treatment
t.

» We will denote intervention with the do-operator: do(T = ¢).
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do-operator II

Population Subpopulations Conditioning Intervening

Fig. 3.1: [llustration of the difference between conditioning and intervening
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do-operator III

» For example, we can write the distribution of the potential outcome Y (¢) as follows:
P(Y(t) =y) £ P(Y =y | do(T = t)) = P(y | do(t))

Also, we can similarly write the ATE (average treatment effect) when the treatment is binary as
follows:

ATE = E[Y | do(T =1)] — E[Y | do(T = 0)]
» We will commonly refer to P(y | do(t)) and other other expressions with the do-operator in
them as interventional distributions.

» If we can reduce an expression Q with do in it (an interventional expression) to one without do
in it (an observational expression), then Q is said to be identifiable.

> we will refer to an estimand as a causal estimand when it contains a do-operator, and we refer
to an estimand as a statistical estimand when it doesn’t contain a do-operator.
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Modularity I

» We refer to the causal mechanisim that generates X; as the conditional distribution of X; given all
of its causes: P(x; | pa;).

> In order to get many causal identification results, the main assumption we will make is that
interventions are local.

» More specifically, we will assume that intervening on a variable X; only changes the causal
mechanism for X;; it does not change the causal mechanisms that generate any other variables.

Assumption 3.1 (Modularity / Independent Mechanisms / Invariance)
If we intervene on a set of nodes S C {1, ..., n}, setting them to constants, then for all i , we have
the following:

1. Ifi & S, then P(x; | pa;) remains unchanged.

2. Ifi € S, then P(x; | pa;) = 1 if x; is the value that X; was set to by the intervention;
otherwise, P(x; | pa;) = 0.

v
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Modularity II

» In the second part, we could have alternatively said P(x; | pa;) = 1if x; is consistent with the

intervention and 0 otherwise.

» The modularity assumption is what allows us to encode many different interventional distribu-
tions all in a single graph.

» The causal graph for interventional distributions is simply the same graph that was used for the
observational joint distribution, but with all of the edges to the intervened node(s) removed.

» The graph with edges removed is known as the manipulated graph.
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Modularity III

(a) Causal graph in the observa- (b) Manipulated graph when inter-
tional setting. vening T to t.

Fig. 3.2: Causal graph and manipulated graph.

> Taking the modularity assumption (Assumption 3.1) and the Markov assumption (the other key

principle) together gives us causal Bayesian networks.
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Truncated Factorization (&) SEM
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» Bayesian network factorization (Definition 2.1)
P(xq, .. HP x; | pa;)

> If we intervene on some set of nodes S and assume modularity, then all of the factors should
remain the same except the factors for X; € S.

» Those factors should change to 1 because those variables have been intervened on.
Proposition 3.1 (Truncated Factorization)

We assume that P and G satisfy the Markov assumption and modularity. Given, a set of interven-
tion nodes S, if x is consistent with the intervention, then

P(x1,...,xn | do(S HP x; | pa;)

Otherwise, P(x1, ..., xn | do(S =s)) = 0.

v
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Revisit "Association is Not Causation" I

» To identify the causal quantity P(y | do(t)).

» The distribution P is Markov with respect to the graph in Figure 3.3.

Fig. 3.3: Simple causal structure where X confounds the effect of T on Y and X is the only confounder.

> The Bayesian network factorization gives us

P(y,t,x) = P(x)P(t | x)P(y [ £,x)
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Revisit "Association is Not Causation" II

» When we intervene on the treatment, the truncated factorization gives us

P(y,x | do(t)) = P(x)P(y | t,x)

» We simply need to marginalize out X to get
P(y | do(t)) —ZP | t,x)P(x) (3.1)
» Replacing P(x) by P(x | t) in Equation (3.1), we have

LP(yltx)P(x[t)=) P(yx|t)=P(y|t)

> In this example, the difference between P(y | do(t)) and P(y | t) is the difference between P(x)
and P(x | t).

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 47 /176



Revisit "Association is Not Causation" III

» Assume that T is a binary variable.

P(y | do(1)) is the distribution for Y(1). Then we can write the ATE as follows:

E[Y(0) — Y(1)] ZyP(y | do(1 EyP y | do(0))

» Then plugging in Equation 3.1 yields a fully identified ATE.
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Backdoor Adjustment I

» We want to turn the causal estimand P(y | do(t)) into a statistical estimand.

» We'll start with assuming we have a set of variables W that satisfy the backdoor criterion.

Definition 3.1 (Backdoor Criterion)

A set of variables W satisfies the backdoor criterion relative to T and Y if the following are true:
1. W blocks all backdoor paths from T to Y.

» thereisachain --- — X — ---orafork - <X = .- and X € W.
> there is a collider on the path that is not in W and none of its descendants are in W.

2. W dose not contain any descendants of T.

» Satisfying the backdoor criterion makes W a sufficient adjustment set.
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Frrred

Backdoor Adjustment II

Theorem 3.1 (Backdoor Adjustment)

Given the modularity assumption (Assumption 3.1), that W satisfies the backdoor criterion (Defi-
nition 3.1), and positivity (Assumption 1.2), we can identify the causal effect of T on Y:

P(y | do(t ZP y | tw)P(w)

» Use the usual trick of conditioning on variables and marginalizing them out:

(y | do(t ZP | do(t), w)P(w | do(t))
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Backdoor Adjustment IIT

» Given that W satisfies the backdoor criterion, we can write
Y P(y | do(t),w)P(w | do(t) ZPylfw P(w | do(t))
w

This follows from the modularity assumption.

» It can’t be through any path that has an edge into T because T doesn’t have any incoming edges
in the manipulated graph. Thus, P(w | do(t)) = P(w)

Y P(y | t,w)P(w | do(t) ZPy|tw w)
w

» Relation to d-separation. We can use the backdoor adjustment if W d-separates T from Y in the

manipulated graph.
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Backdoor Adjustment and Potential Outcomes I

» Recall Theorem 1.1

E[Y(1) — Y(0)] = Ex[E[Y | T =1,X] — E[Y | T = 0, X]]

» We can derive this from the more general backdoor adjustment in a few steps.

> First, we take an expectation over Y:
E[Y | do(t)] =) yP(y | do(t))
Yy
=YY yP(y | t,w)P(w)
y w

=Y E[Y | t,w]P(w)

— EwE[Y | t, W]
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Backdoor Adjustment and Potential Outcomes II

» Then we look at the difference between T = 0and T = 1:
E[Y | do(1)] —E[Y | do(0)] = Ew[E[Y | T=1,W]—E[Y | T =0,W]]
The do-notation E[Y | do(#)] is just another notation for the potential outcomes E[Y (¢)].
> Recall the conditional exchangeability (Assumption 1.2)

(Y(1),Y(0)) LT |[W

However, we had no way of knowing how to choose W. Using graphical causal models, we
know how to choose a valid W: we simply choose W so that it satisfies the backdoor criterion.
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Structural Equations I

» The equals sign in mathematics does not convey any causal information.
» We need something asymmetric.

»> A is a cause of B, meaning that changing A results in changes in B, but changing B does not
result in changes in A.

» Then we can write the following strictural equation:

B:= £(A)

where f is some function that maps A to B. The mapping between A and B is deterministic.

» Ideally, we’d like to allow it to be probabilistic, which allows room for some unknown causes of
B that factor into this mapping.

B:=f(AU)

where U is some unobserved random variable.
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Structural Equations II
©

Fig. 3.4: Graph for simple structural equation. The dashed node U means that U is unobserved.

» The unobserved U is analogous to the randomness that we would see by sampling units (indi-
viduals).

» There are analogs to every part of the potential outcome Y;(t): B is the analog of Y, A = a is the
analog of T = t, and U is the analog of i.

> Although the mapping is deterministic, because it takes a random variable U as input, it can
represent any stochastic mapping, so structural equations generalize the probabilistic factors

P(x; | pa;).
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Structural Causal Model I

» A causal mechanism that generates a variable
is the structural equation that corresponds to
that variable.

» We write structural equations for Figure 3.5
below:

B := fp(A,Up)
M: C:=fc(A, B Uc) (3.2)
D = fD(A,C, UD)

» The variables that we write structural equa-
tions for are known as endogernous variables.

» In contrast, cxogenous variables are variables
who do not have any parents in the causal

graph

Fig. 3.5: Graph for the structural equations in Equation (3.2).
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Structural Causal Model II

Definition 3.2 (Structural Causal Model (SCM))

A structural causal model is a tuple of the following sets:
1. A set of endogenous variables V.

2. A set of exogenous variables U.

3. A set of functions f, one to generate each endogenous variable as a function of other variables.

» If the causal graph contains no cycles (is a DAG) and the noise variables U are independent,
then the causal model is Markovian.
» If the causal graph doesnt contain cycles but the noise terms are dependent, then the model is

semi-Markovian.

» The graphs of non-Markovian models contain cycles.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 57 /176



Interventions I

» The intervention do(T = t) simply corresponds to replacing the structural equation for T with

T:=t.
» For example, consider the following causal model M with corresponding causal graph in Fig-
ure 3.6.
M. T=frXUr)
Y= fY(Xr T, UY)
(a) Basic causal graph. (b) do(T =t).

Fig. 3.6: Causal graph and manipulated graph.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 58 /176



Interventions II

> If we then intervene on T to set it to t, we get the interventional SCM M;

T:=t

M :
Y := (X, T, Uy)

» The fact that do(T = t) only changes the equation for T and no other variables is a consequence
of the modularity assumption.

Assumption 3.2 (Modularity Assumption for SCMs)

Consider an SCM M and an interventional SCM M; that we get by performing the intervention
do(T = t). The modularity assumption states that M and M share all of their structural equations
except the structural equation for T , which is T := t in M;.
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Collider Bias I

» In Theorem 3.1, we specify that W dose not contain any descendants of T.

» There are two categories of things that could go wrong if we condition on descendants of T.

Case 1: We block the flow of causation from T to Y.

@ W)
F@— TGO

(a) Causal graph where all causa- (b) Causal graph where part of the
tion is blocked by conditioning on causation is blocked by condition-
M. ing on M.

Fig. 3.7: M blocks the flow of causation from T to Y.
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Collider Bias II

> If we condition on a node that is on a directed path from T to Y, then we block the flow of
causation along that causal path (Figure 3.7 (a)).

»> We will refer to a node on a directed path from T to Y as a imediator, as it mediates the effect of T
onY.

» In Figure 3.7 (b), only a portion of the causal flow is blocked by M. This is because causation
can still flow along the T — Y edge.

» In this case, we will get a non-zero estimate of the causal effect, but it will still be biased, due to
the causal ow that M blocks.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 61/176



Collider Bias III

Case 2: We induce non-causal association between T and Y.

» If we condition on a descendant of T that isn’t a media-
tor, it could unblock a path from T to Y that was blocked
by a collider.

» In Figure 3.8, conditioning on Z , or any descendant of
Z in a path like this, will induce collider bias.

Silin Du (MS&E) Introduction to Causal Inference
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Collider Bias IV

» Conditioning on Z in Figure 3.9 (a)? @
» Graphs are frequently drawn without
explicitly drawing the noise variables. @

» Making M'’s noise variable explicit, we
get Figure 3.9 (b).

> T — M < Uy forms an immorality. e @ ° e @ G

» There is now induced association flow-
ing between T and U, through the edge

o @ @

> g .
Two types of association getting tangled (a) Causal graph where the child of (b) Magnified causal graph where

up alOI’lg the T - M edg@, making the a mediator is conditioned on. the child of a mediator is condi-

observed association between T and Y tioned on.

Fig. 3.9: M blocks the flow of causation from T to Y.
not purely causal.
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Collider Bias V

> Note that we actually can condition on some descendants of T without inducing non-causal
associations between T and Y.

» However, this can get a bit tricky, so it is safest to just not condition on any descendants of T, as
the backdoor criterion prescribes.

» This rule is usually described as not conditioning on any posit-treatment covariates.

M-Bias.

» Unfortunately, even if we only condition on pretreat-
ment covariates, we can still induce collider bias.

» Conditioning on the collider Z, in Figure 3.10 will open
up a backdoor path, along which non-causal association

can flow.

» This is known as M-bias. Fig. 3.10: Causal graph depicting M-bias.
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Causal Supervised Learning I

» One of the most fundamental principles in supervised learning is to assume that our data D is
independent and identically distributed (ii.d.).

» It implies that unseen inputs occurring when the model is in production follow the same distri-
bution as the training set.

> As an alternative to the i.i.d. assumption, we can assume that our data is sampled from inter-
ventional distributions governed by an SCM.

> For a given dataset generated across a set of environments &£, {(xf, yf)f\il} e we view each
L Jee
environment e € £ as being sampled from a separate interventional distribution.

» In this section, we will discuss two classes of methods that aim to learn domain-robust, trans-
ferable featires or mechanismsInvariant Feature Learning and Invariant Mechanism Learning.
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Causal Supervised Learning II

(A) Cow: 0.99, Pasture: 0.99, Grass: 0.99, No (B) No Person: 0.99, Water: 0.98, Beach: 0.97,
Person: 0.98, Mammal: 0.98 Outdoors: 0.97, Seashore: 0.97
Fig. 4.1: Cows in ‘common’ contexts (e.g., Alpine pastures) are detected and classified correctly (A), while cows
in uncommon contexts (beach, waves, and boat) are not detected (B).
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Invariant Feature Learning I

» Invariant feature learning (IFL) is the task of identifying features of our data X that are predic-
tive of Y across a range of environments £.

» From a causal perspective, the causal parents pa(Y) are always predictive of Y under any inter-
ventional distribution except where Y itself has been intervened upon.

» We can abstract a complex SCM into a simple SCM by collecting the causal parents of Y into one
variable, while the other variables are collected into another.

> The most general abstraction is the Style and Content Decomposition (SCD).
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Invariant Feature Learning II

Definition 4.1 (Style and Content Decomposition)

The style and content decomposition (SCD) is a causal graph of a data generating process (DGP)
for X and Y . We call S the style variables and C the content variables, where both are assumed
to be latent. The content variables group all of the causal parents of Y, pa(Y), while the style
variables group the rest of the variables. The generations of X and Y follow the distributions

X~p(x]sc), Y~plylc)

Definition 4.2 (Invariant Feature Learning)

Invariant Feature Learning (IFL) aims to identify the content features C that cause both X and Y,
and a mapping p(y | c), such that

C=d(X), st. Y~pylc)
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Invariant Feature Learning III

We will introduce IFL through the following aspects
» Deconfound data (data augmentation) [link]
» Deconfound intermediate representations [link]

» Deconfound models during training [link]

We select one representative work for each category.
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Deconfound Data

Title: Explaining the Efficiency of Counterfactually Augmentation Data
Author: Divyansh Kaushik, Amrith Setlur, Eduard Hovy, Zachary C. Lipton (CMU)
Published: International Conference on Learning Representations, ICLR 2021

Counterfactually Augmentation Data (CAD): obtained via a human-in-the-loop process in
which given some documents and their (initial) labels, humans must revise the text to make
a counterfactual label applicable.

» Models trained on the augmented (original and revised) data appear, empirically, to rely less on
semantically irrelevant words and to generalize better out of domain.

» Provide some insights that help to explain the efficacy of CAD.
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Introduction I

» Recently in NLP, Kaushik et al. (2020) proposed Counterfactually Augmented Data (CAD), inject-
ing causal thinking into real world settings by leveraging human-in-the-loop feedback.

» Human editors are presented with document-label pairs and tasked with editing documents to
render counterfactual labels applicable.

» The instructions restrict editors to only make modifications that are recessary to flip the label’s
applicability.
» The process can be viewed as the identification of casially relevant features (versus spirions

features).

» Models trained on CAD enjoyed oi/t-0f-domain performance benefits.

Research Questions:
1. What is the assumed causal structure underlying settings where CAD might be effective?

2. What are the principles underlying its out-of-domain benefits?
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Introduction II

3. Must humans really intervene, or could automatic feature attribution methods, e.g., attention,
or cheaper feedback mechanisms, e.g., feature feedback, produce similar results?

Consider linear Guassian model: causal setting and anti-causal setting (Figure 4.2).

(a) Causal setting (b) Noisy measurement in (c) Anticausal setting (d) Noisy measurements in
causal setting anticausal setting

Fig. 4.2: Toy causal models with one hidden confounder. In (a) and (c), the observed covariates are x1, x5. In (b)
and (d), the observed covariates are X1, x,. In all cases, y denotes the label.
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Causal Setting I

Consider the linear model
Y=XB+e

where Y € R, X € R"™?,8 € RF,and € € NV (0,021,) an iid. noise term. The OLS estimate Bl is
given by

,BOIS h COV(X, Y)
Cov(X, X)

If we observe only two covariates (p = 2), then:

2 2
ols _ 9%0x1y = Ox1,xa0x,y ols _ % %x,y = Ox1,x0x1y 41
1= 2 2 _ 2 , B2” = ) (4.1)

2 2
U1 0x, = Oxy,x; % 0%, = Uxy,x;
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Causal Setting II

» We know focus on the casual setting (Figure 4.2(a), (b)).

Z =1, u; ~ N (0/(71242)
x1 = bz + uy,, Ue, ~ N (0/‘7511)
Xp =€z + Uy,, ux, ~ N (OzUiZ)

y = axy + uy, uy ~ N (0,05y

Applying OLS, we obtain ' = a, 85" = 0.
2

» If we only observe x; via a noisy proxy ¥; ~ A (xl, O, T (Tele ) (Figure 4.2(b)).
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Causal Setting III ) SEM

AEGEER

> Assuming ey, L (x1,x2,y), from Equation (4.1), we get

a(of (Pod, +302 ) +2 o)

oz (bz O, + c20Z, ) +qu a%x + 07 (czauz —l—aﬁxz)
(4.2)
— acbo’? o2
ﬁgls ol 1z

2 2 2 2
oz, (bzau + c2(7ux ) + qul Oy, + 02, (czauz +‘7ux2)

/3015 & —5—. As Ue increases, | ,B"ls| decreases and | ,B"’S| increases.
1

> lim. ‘1’15 = 0, whereas ﬁ"ls converges to a finite non-zero value.
€X1

» Only observing a noisy version of x, will not affect our OLS estimates.

» Under perfect measurement, the causal variable d-separates the non-causal variable from the
label.
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Causal Setting IV

» Under observation noise, a predictor will rely on the non-causal variable (Equation (4.2)).

» Moreover, when the causal feature x is noisily observed, additional observation noise on non-
causal features x; yields models that are more reliant on causal features. (Cannot find evidence
in the paper)

» In a qualitative sense, the process of generating CAD is the intervention on the casual features.

» For each example, we produce two sets of values of x1, one such that the label is applicable and

one such that it is not applicable. One is given in the dataset, and the other is produced via the
revision.
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Anticausal Setting I

»> Now consider the anticausal setting (Figure 4.2(c), (d)).
Z =1y, Uy ~ N

q:az+uq, quN

Xp = cq + Uy,, Uy, ~ N

(
(
y=bz+uy, uy~ N (
(
(

x1 =dy + Uy, Uy, ~ N
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Anticausal Setting II

If we were to solve the linear regression problem y = x11 + x282 + Bo, we get
d (azcza,%zaﬁy + (cza,i7 + a&xz) (bzaf,Z + U,%y))
(dzbzo,%z + 0%, + dza,%y) (U%Xz + czaﬁq) + (Uﬁxl + d205y> 2a20f,

2 2
ols ubCUuZ Tty

2
(d2b2¢752 + o2, + dzaf,y) (U,%xz + CZU%q) + (U,%xl + dzaﬁy) 2a20?.

I
Byl =

4.3)

» Similarly, we observe a noisy version x7:

JaZX1+€x1, €X1NN(O/0-2 )/ GJ-XZI]/

6,(1

Then we need to replace Uﬁxl with 17571 in Equation (4.3):

2 _ 2
Tug; = Ouy, —l—ngl

Silin Du (MS&E)

Introduction to Causal Inference September 4, 2023 79 /176



Anticausal Setting III ) DLV

AEGEER

» Finally we get

R R %,
ols — o — 1+ (44)
T TV

-2 22,2 2,2 2
. ., (c acoy, +c¢ T, —I—quz)

ac —
(d2b2aﬁz + U,%xl + dza,%y) ((72 - czaﬁq) + ((72 + dza,%y) c2a20},

Uxy Hxy

(4.5)

2 gols Zols | 4
As 0, increases, |BS"°| decreases and |B%| increases.
> If we observe a noisy version of xp, we find that as ngz increases, |89 increases and [B|
decreases.

> As observation noise on the non-causal feature x, increases, we expect the learned predictor to
rely more on the causal feature.
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Anticausal Setting IV

» In this interpretation, we think of CAD as a process by which we (the designers of the exper-
iment) intervene on the label itself and the human editors, play the role of a simulator that we
imagine to be capable of generating a counterfactual example, holding all other latent variables
constant.

»> Note that by intervening on the label, we d-separate it from the spurious correlate x;.
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Experiment Setting I

Hypotheses

1. If spans edited to generate counterfactually revised data (CRD) are analogous to the causal (or
anticausal) variables, then noising those spans (e.g. by random word replacement) should lead
to models that el more on noncausal features and perform worse on out of domain data.

2. Noising unedited spans should have the opposite behavior, leading to degraded in-domain
performance, but comparatively better out-of-domain performarnce.

3. Whether the feedback from human workers is yielding anything qualitatively different from
what might be seen with spans marked by automated feature attribution methods such as attention
and saliency.

4. Is CAD better than automatic sentiment flipping methods (e.g., text style transfer algorithm)?
Settings

> Tasks: sentiment analysis and NLI.
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Experiment Setting II

> All datasets are accompanied with human feedback (tokens deemed relevant to the label’s ap-
plicability) which we refer to as rationales.

» In each document, we replace a fraction of rationale (or non-rationale) tokens with random
tokens sampled from the vocabulary.

> In the first set of experiments, we inject noise into rationales and non-rationales marked by
human and automated feature attribution methods.

> In the second set of experiments, we train models on original, CAD, and original & sentiment
flipped reviews, which are produced by text style transfer methods.
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Fig. 4.3: Change in classifier accuracy as noise is injected on rationales/non-rationales for IMDb reviews from
Kaushik et al. (2020). The vertical dashed line indicates the fraction of median length of non-rationales equal to
the median length of rationales.



Experiment Results I

In Figure 4.3,
> All classifiers are trained on the original 1.7k IMDb reviews from Kaushik et al. (2020).
> In-sample test: models are tested on the IMDDb test set.
» CRD: models are tested on counterfactually revised data.

Figure 4.3 (a).

» The SVM classifier experiences a drop of ~ 11% by the time all rationale tokens are replaced
with noise. However, it experiences an 28.7% drop in accuracy on Yelp reviews.

» However, as more r1011-rationales are replaced with noise, in-sample accuracy for SVM goes down
by ~ 10% but increases by ~ 1.5% on Yelp.
» For BERT, in-sample accuracy decreases by only 16.1% and only 13.6% on Yelp.
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Experiment Results II

Figure 4.3 (b) and (c).

> We obtain different results using rationales identified via feature feedback and gradient based
feature attribution.

» While we might not expect spurious signals to be as reliable out of domain, that does not mean
that they will always fail.

» In such settings, even though noising non-causal features would lead to models relying more
on causal features, this may not result in better out-of-domain performance.
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Experiment Results III

Table 1: Accuracy of BERT trained on SNLI (DeYoung et al.} 2020) as noise is injected on human

identified rationales/non-rationales. RP and RH are Revised Premise and Revised Hypothesis test

sets in [Kaushik et al| (2020). MNLI-M and MNLI-MM are MNLI [2018) dev sets.

Percent noise added to train data rationales

Dataset 0 10 20 30 40 50 60 70 80 90 100
In-sample test 91.6 90.7 90.0 889 87.3 862 84.4 80.2 780 722 719
RP 727 707 69.1 671 657 624 618 57.7 556 53.8 b51.4
RH 847 80.8 804 795 77.2 757 733 67.7 640 579 532
MNLI-M 756 747 739 720 706 69.1 647 59.1 558 544 53.3
MNLI-MM 779 767 756 739 723 708 656 584 551 53.6 525
Percent noise added to train data non-rationales
Dataset 0 10 20 30 40 50 60 70 80 90 100
In-sample test 91.6 91.4 91.3 90.9 90.8 89.9 89.0 8.7 87.8 86.7 854
RP 7207 735 732 721 715 707 706 706 706 706 704
RH 847 83.6 826 819 81.3 811 805 798 794 794 792
MNLI-M 756 749 744 726 724 718 713 713 709 709 70.8
MNLI-MM 779 762 758 750 746 743 739 737 733 73.0 728

We can observe similar patterns in NLI tasks. But, for various models the drops in both in-sample
and out-of-domain accuracy are greater in magnitude when noise is injected in rationales versus

when it is injected in non-rationales. This is opposite to what we observe in sentiment analysis.
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Experiment Results IV

We use SOTA transfer methods to con-
vert Positive reviews into Negafive and
vice versa.

Ideally, we would expect these methods
to preserve a document’s content while
modifying the attributes that relate to
sentiment.

Sentiment classifiers trained on original
and sentiment-flipped reviews often give
better out-of-domain performance.
However, models trained on CAD per-
form even better across all datasets, hint-
ing at the value of human feedback.

Table 2: Out-of-domain accuracy of models trained on original only, CAD, and original and

sentiment-flipped reviews
Training data SVM NB BiLSTM (SA) BERT
Accuracy on Amazon Reviews

CAD (3.4k) 793 786 714 833

Orig. & Hu et al[(2017 66.4 71.8 62.6 78.4

Orig. &| . 62.9 654 57.6 61.8

Orig. & 64.0 69.3 54.7 7.2

Orig. & 743 73.0 63.8 71.3

Orig. (3 745 743 68.9 80.0

Accuracy on Semeval 2017 (Twitter)
668 724 58.2 82.8
60.9 63.4 56.6 79.2
57.6  60.8 54.7 62.7
59.4  62.6 54.9 72.5
62.8 63.6 54.6 79.3
63.1 63.7 50.7 72.6
Accuracy on Yelp Reviews
856 86.3 73.7 86.6
774 804 68.8 84.7
67.8 73.6 63.1 7.1
69.4 75.1 66.2 84.5
813 821 68.6 78.8
819 823 72.0 84.3
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Conclusion

» Simple analysis on toy linear Gaussian models + a large-scale empirical investigation on senti-
ment analysis and NLI tasks — to understand the efficacy of CAD.

» Data corrupted by adding noise to rationale spans (analogous to adding noise to causal features)
will degrade out-of-domain performance, while noise added to non-causal features 17171/ make
models more robust out-of-domain.

» Models trained on the augmentation of original data and revised data generated by sfi/le fransfer
methods had better out-of-domain generalization in some cases compared to models trained on
original data alone, but performed worse than models trained on CAD.
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Deconfound Intermediate Representations

v

T itle: Causal Transportability for Visual Recognition

v

Author: Chengzhi Mao!, Kevin Xial, James Wangl, Hao Wangz, Junfeng Yangl, Elias
Bareinboim!, Carl Vondrick! (!Columbia University, 2Rutgers University)

» Published: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, 2022.

» Visual representations often contain robust and non-robust features.

» Image classifiers may perform poorly on ouf-of-distribution samples because spurious correla-
tions between non-robust features and labels can be changed in a new environment.

» Standard classifiers fail because the association between images and labels is not transportable
across settings.

» The causal effect, which severs all sources of confounding, remains invariant across domains.
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Introduction

» In this paper, we investigate visual representations for object recognition through the lenses of
causality.
» First, we will show that the association between image and label is not in generalizable (in causal

language, transportable) across domains.

> We then note that the causal effect from the input to the output, which severs any spurious cor-
relations, is invariant when the environment changes with respect to the features” distributions.

> Getting the causal effect for natural images is challenging because there are in1umerable 1nob-
served confounding factors within realistic data.

» Under some relatively mild assumptions, we will be able to extract the robust features from ob-
servational data through both causal and deep representations, and then use the representations
as proxies for identifying the causal effect without requiring observations of the confounding
factors.
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Probelm Formulation — Structural Modeling I

> X,Y: random variables related to images and labels. x, y: the specific instantiations of the pixels
and label.

» Consider a structural causal model (SCM) M that encodes a 4-tuple

(V={X,Y}, U= {Ux, Uxy}, F = {fx fr}, PU))

> V is the set of observed variables (the image X and its label Y).

> U represents unobserved variables encoding external sources of variation not captured in the
image and the label themselves.

> F is the set of mechanisms { fx, fy }, which determine the generative processes of X and Y such
that X < fx(UX, ny) and Y + fy(X, ny).

» P(U) represents a probability distribution over the unobserved variables.
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Probelm Formulation — Structural Modeling II

More explanation on U:

» Uxy is called concept vector, as it represents all underlying factors that produce both the core
features of the object in image x and its label, y.

» For example, one instantiation of Uxy = uxy may encode the concepts of "flippers" and "wing",
which are translated into an image of a "waterbird" when passed into fx.

» Uy represents nuisance factors, such as the background, that affect the generation process of the
image.

> fy may represent someone who is labeling image x and will have a conceptual understanding
of waterbird through uxy.

» Together, the underlying distribution over P (Uxy, Ux) combined with functions fx and fy
induce a distribution over P(X, Y), which is how data is generated.

» It is /mpossible to recover the structural functions (F) and probability over the exogenous vari-
ables (P(U)) from observational data alone (P(V)).
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Modeling In vs. Out-of-Distribution Generalization I

» Out-of-distribution case (transportability problem): training data may come from a domain 7
that differs from the test domain 7r*.

» Assume that the labeling process and underlying concepts are consistent across domains (i.e., fy
and P(Uyxy) remain the same in both settings), but the generative process of the image X may
change (i.e., f5 and P*(Ux) may differ from fx and P(Uy), respectively).

» In general, we do not know the true underlying mechanisms fx, f%, and fy, nor can we observe
the immeasurably large space of P(Ux, Uxy).

> We can represent the structural invariances across domains by leveraging a graphical represen-
tation shown in Figure 4.4. The disparities across domains 7t and 7t* are usually modeled by a
transportability node called S, which can be interpreted as a switch across domains; i.e., fx will
be active if S = 0, and f5; otherwise.
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