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Lecture Overview

In this slide, we first introduce the basic ideas in causal inference, including

▶ Potential outcome framework.

▶ Causal graph.

▶ Structural causal model.

Then, we focus on Causal Machine Learning, including

▶ Causal supervised learning.

▶ Causal generative modeling.

▶ Causal explanations.

▶ Causal fairness.

▶ Causal reinforcement learning.
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Potential Outcomes

▶ T: the random variable for treatment and is binary in most cases.
▶ Y: the random variable for the outcome of interest.
▶ X: covariates.

Let’s consider the scenario where you are unhappy. And you are considering whether or not to get a
dog to help make you happy.
▶ You will still be happy if you get a dog.
▶ If you don’t get a dog, you will remain unhappy.

In this scenario, your outcome Y is happiness

Y = 1 : happy, Y = 0 : unhappy

The treatment T is whether or not to get a dog.
▶ We denote by Y(1) the potential outcome of happiness you would observe if you were to get a

dog (T = 1).
▶ Similarly, we can define Y(0).
▶ In this scenario, Y(1) = 1, Y(0) = 0.
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Individual Treatment Effects

▶ More generally, the potential outcome Y(t) denotes the outcome would be if the treatment is t.

▶ A potential outcome Y(t) is distinct from the observed outcome Y in that not all potential out-
comes are observed.

▶ In the previous scenarios, there was only a single individual (unit) in the whole population.

▶ Generally, there are many units in the population of interest.

▶ The treatment, covariates, and outcome of the ith unit: Ti, Xi, Yi.

▶ We can define the individual treatment effect (ITE) for unit i:

τi ≜ Yi(1)−Yi(0)

▶ Y(t) is a random variable because different units will have different potential outcomes.

▶ Yi(t) is usually treated as non-random.
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The Fundamental Problem of Causal Inference

Holland (1986)

It is impossible to observe all potential outcomes of the same unit.

▶ Same object or person at a different time is a different unit.

▶ We cannot observe both Yi(0) and Yi(1).

▶ This is known as the fundamental problem of causal inference.

▶ This problem is unique to causal inference because, in causal inference, we care about making
causal claims, which are defined in terms of potential outcomes.

▶ In machine learning, we often only care about predicting the observed outcome Y, so there is no
need for potential outcomes.

▶ The potential outcomes that you do not (and cannot) observe are known as counterfactuals be-
cause they are counter to fact (reality).
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Average Treatment Effect I

▶ We get the average treatment effect (ATE) by taking an average over the ITEs:

τ ≜ E[Yi(1)−Yi(0)] = E[Y(1)−Y(0)]

where the average is over the units i.
▶ How to compute the ATE?

Consider the following table as the whole population of interest

i T Y Y(1) Y(0) Y(1)−Y(0)

1 0 0 ? 0 ?
2 1 1 1 ? ?
3 1 0 0 ? ?
4 0 0 ? 0 ?
5 0 1 ? 1 ?
6 1 1 1 ? ?
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Average Treatment Effect II

▶ The fundamental problem of causal inference is actually a missing data problem.

▶ Association difference: E[Y | T = 1]−E[Y | T = 0].

ATE = E[Y(1)−Y(0)] = E[Y(1)]−E[Y(0)] ?
= E[Y | T = 1]−E[Y | T = 0]

▶ Unfortunately, this is not true in general.

▶ If it were, that would mean that causation is simply association.

▶ They are not equal due to confounding.

T Y

X
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Ignorability and Exchangeability I

What assumption(s) would make it so that the ATE is simply the associational difference?
▶ What makes it valid to calculate the ATE by taking the average of the Y(0) column, ignoring

the question marks, and subtracting that from the average of the Y(1) column, ignoring the
question marks?

▶ This ignoring of the question marks (missing data) is known as ignorability.
▶ Assuming ignorability is like assuming units were randomly assigned to different treatment.

T Y

X

Assumption 1.1 (Ignorability / Exchangeability)

(Y(0), Y(1)) ⊥ T
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Ignorability and Exchangeability II

▶ This assumption allows us to reduce the ATE to the associational difference:

E[Y(1)]−E[Y(0)] = E[Y(1) | T = 1]−E[Y(0) | T = 0] (1.1)

= E[Y | T = 1]−E[Y | T = 0] (1.2)

The ignorability assumption is used in Equation (1.1).

▶ Another perspective on this assumption is that of exchangeability.

▶ Exchangeability means that the treatment groups are exchangeable in the sense that if they were
swapped, they would observe the same outcomes.

▶ Formally, this assumption means

E[Y(1) | T = 0] = E[Y(1) | T = 1], E[Y(0) | T = 0] = E[Y(0) | T = 1]

which implies that

E[Y(1) | T = t] = E[Y(1)], E[Y(0) | T = t] = E[Y(0)]
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Identifiability

▶ We have leveraged Assumption 1.1 to identify causal effects.

▶ To identify a causal effect is to reduce a causal expression (potential outcome notations) to a
purely statistical expression (such as T, X, and expectations).

▶ This means that we can calculate the causal effect from just the observational distribution
P(X, T, Y).

Definition 1.1 (Identifiability)

A causal quantity (e.g. E[Y(t)]) is identifiable if we can compute it from a purely statistical
quantity (e.g. E[Y | t]).
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Conditional Exchangeability and Unconfoundedness I

▶ In general, it is completely unrealistic to assume that the treatment groups are exchangeable.

▶ However, if we control for relevant variables by conditioning, then maybe the subgroups will
be exchangeable.

Definition 1.2 (Conditional Exchangeability / Unconfoundedness)

(Y(0), Y(1)) ⊥ T | X

Unconfoundedness is the main assumption necessary for causal inference.

E[Y(1)−Y(0) | X] = E[Y(1) | X]−E[Y(0) | X] (1.3)

= E[Y(1) | T = 1, X]−E[Y(0) | T = 0, X] (1.4)

= E[Y | T = 1, X]−E[Y | T = 0, X] (1.5)
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Conditional Exchangeability and Unconfoundedness II

We get Equation (1.4) by conditional exchangeability.

E[Y(1)−Y(0)] = EXE[Y(1)−Y(0) | X] (1.6)

= EX [E[Y | T = 1, X]−E[Y | T = 0, X]] (1.7)

Theorem 1.1 (Adjustment Formula)

Given the assumptions of unconfoundedness, overlap, consistency, and no interference, we can
identify the average treatment effect:

E[Y(1)−Y(0)] = EX [E[Y | T = 1, X]−E[Y | T = 0, X]]
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Positivity/Overlap I

Positivity is the condition that all subgroups of the data with different covariates have some proba-
bility of receiving any value of treatment.

Assumption 1.2 (Positivity / Overlap / Common Support)

For all values of covariates x present in the population of interest (i.e. x such that P(X = x) > 0),

0<P(T = 1 | X = x)<1

▶ If we have a positivity violation, then we will be conditioning on a zero probability event.

▶ There will be some value of x with with non-zero probability for which P(T = 1 | X = x) = 0
or P(T = 0 | X = x) = 0.
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Positivity/Overlap II

▶ For discrete covariates and outcome, we have

E[Y(1)−Y(0) | X]

=EX [E[Y | T = 1, X]−E[Y | T = 0, X]]

=∑
x

P(X = x)

(
∑
y

yP(Y = y | T = 1, X = x)−∑
y

yP(Y = y | T = 0, X = x)

)

=∑
x

P(X = x)

(
∑
y

y
P(Y = y, T = 1, X = x)

P(T = 1 | X = x)P(X = x)
−∑

y
y

P(Y = y, T = 0, X = x)
P(T = 0 | X = x)P(X = x)

)
(Bayes’ rule)

▶ If P(T = 1 | X = x) = 0 for any level of covariates x with non-zero probability, then there is
division by zero in the first term, so EX [E[Y | T = 1, X]−E[Y | T = 0, X] is undefined.
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Positivity/Overlap III

▶ Another name for positivity is overlap. The intuition for this name is that we want the covariate
distribution of the treatment group to overlap with the covariate distribution of the control
group.

▶ Positivity-Unconfoundedness Tradeoff. Although conditioning on more covariates could lead
to a higher chance of satisfying unconfoundedness, it can lead to a higher chance of violating
positivity.
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No Interference, Consistency, and SUTVA I

▶ No interference means that my outcome is unaffected by anyone else’s treatment. Rather, my
outcome is only a function of my own treatment.

Assumption 1.3 (No Interference)

Yi(t1, ..., ti−1, ti, ti+1, ..., tn) = Yi(ti)

▶ Consistency is the assumption that the outcome we observe Y is actually the potential outcome
under the observed treatment T.

▶ Consistency encompasses the assumption that is sometimes referred to as no multiple versions
of treatment.
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No Interference, Consistency, and SUTVA II

Assumption 1.4 (Consistency)

If the treatment is T, then the observed outcome Y is the potential outcome under treatment T.
Formally,

T = t⇒ Y = Y(t)

equivalentlt,

Y = Y(T)

▶ It’s commonly to see the stable unit-treatment value assumption (SUTVA) in the literature.

▶ SUTVA is satisfied if unit (individual) i’s outcome is simply a function of unit i’s treatment.

▶ Therefore, SUTVA is a combination of consistency and no interference.
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Revisit the Adjustment Formula

All assumptions are needed

▶ Unconfoundedness (Assumption 1.2)

▶ Positivity (Assumption 1.2)

▶ No interference (Assumption 1.3)

▶ Consistency (Assumption 1.4)

Proof of Theorem 1.1.

E[Y(1)−Y(0)] = E[Y(1)]−E[Y(0)] (linearity of expectation)

= EX [E[Y(1) | X]−E[Y(0) | X]] (law of iterated expectations)

= EX [E[Y(1) | T = 1, X]−E[Y(0) | T = 0, X]] (unconfoundedness and positivity)

= EX [E[Y | T = 1, X]−E[Y | T = 0, X]] (consistency)
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Statistics Terminology

▶ An estimand is the quantity that we want to estimate. For example, EX [E[Y | T = 1, X]−E[Y |
T = 0, X]] is the estimand we care about for estimating the ATE.

▶ An estimate (none) is an approximation of some estimand, which we get using data.

▶ An estimator is a function that maps a dataset to an estimate of the estimand.

▶ To estimate (verb) is to feed data into an estimator to get an estimate.

▶ The process that we will use to go from data + estimand to a concrete number is known as
estimation.

▶ Causal estimand refers to any estimand that contains a potential outcome.

▶ Identification refers to the process of moving from a causal estimand to an equivalent statistical
estimand.

▶ Estimation refers to the process of moving from a statistical estimand to an estimate.
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Graph Terminology I

▶ A graph is a collection of nodes (also called vertices) and edges that connect the nodes.

▶ We will denote the parents of a node X with pa(X).

▶ A path in a graph is any sequence of adjacent nodes, regardless of the direction of the edges that
join them.

▶ A directed path is a path that consists of directed edges that are all directed in the same direction.

▶ If there is a directed path that starts at node X and ends at node Y, then X is an ancestor of Y,
and Y is a descendant of X.

▶ We will denote descendants of X by de(X).

▶ A directed path from some node X back to itself is known as a cycle.

▶ If there are no cycles in a directed graph, the graph is known as a directed acyclic graph (DAG).

▶ We mostly focus on DAGs.
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Bayesian Network I

▶ Bayesian networks are the main probabilistic graphical model that causal graphical models
(causal Bayesian networks) inherit most of their properties from.

▶ In general, we can use the chain rule of probability to factorize any distribution:

P(x1, ..., xn) = P(x1)∏
i

P (xi | xi−1, ..., x1)

However, it would take an exponential number of parameters to model the distribution.

▶ Only model local dependencies.

▶ Given a probability distribution and a corresponding DAG, we can formalize the specification
of independencies with the local Markov assumption:

Assumption 2.1 (Local Markov Assumption)

Given its parents in the DAG, a node X is independent of all its non-descendants.
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Bayesian Network II

▶ Consider an example with 4 variables.

▶ We can factorize any P such that

P(x1, x2, x3, x4) = P(x1)P(x2 | x1)P(x3 | x2, x1)P(x4 | x3, x2, x1)

▶ If P is Markov with respect to the graph in Figure 2.1, then we can simplify

P(x1, x2, x3, x4) = P(x1)P(x2 | x1)P(x3 | x2, x1)P(x4 | x3)

X1 X2

X3 X4

Fig. 2.1: Four node DAG
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Bayesian Network III

▶ The main consequences of the local Markov assumption:

Definition 2.1 (Bayesian Network Factorization)

Given a probability distribution P and a DAG G, P factorizes according to G if

P(x1, ..., xn) = ∏
i

P(xi | pai)

▶ The Bayesian network factorization is also known as the chain rule for Bayesian networks or
Markov compatibility.

▶ The local Markov assumption does not even tell us that if X and Y are adjacent in the DAG, then
X and Y are dependent.

▶ We will generally assume a slightly stronger assumption than the local Markov assumption.
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Bayesian Network IV

Assumption 2.2 (Minimality Assumption)

1. Given its parents in the DAG, a node X is independent of all its non-descendants (Assump-
tion 2.1)

2. Adjacent nodes in the DAG are dependent.

The minimality assumption is equivalent to saying that we can’t remove any more edges from the
graph. In a sense, every edge is active.
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Causal Graphs

Definition 2.2 (What is a cause?)

A variable X is said to be a cause of a variable Y if Y can change in response to changes in X.

Assumption 2.3 ((Strict) Causal Edges Assumption)

In a directed graph, every parent is a direct cause of all its children.

▶ If we fix all of the direct causes of Y, then changing any other cause of Y won’t induce any
changes in Y.

▶ This assumption is strict in the sense that every edge is active, just like in DAGs that satisfy
minimality.

▶ When we add the causal edges assumption, directed paths in the DAG take on a very special
meaning; they correspond to causation.
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Two Nodes

▶ Flow of association: whether any two nodes in a graph are associated (statistically dependent)
or not associated (statistically independent).

▶ Two unconnected nodes.
P(x1, x2) = P(x1)P(x2)

▶ In contrast, if there is an edge between the two nodes then the two nodes are associated.

X1 X2

(a) Two unconnected nodes

X1 X2

(b) Two connected nodes

Fig. 2.2: Two nodes in a graph
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Chain and Fork I

▶ Chain and forks share the same set of dependencies.
▶ In both structures, X1 and X2 are dependent, and X2 and X3 are dependent.
▶ X1 and X3 are associated in both chains and forks.
▶ In the chain, association flows from X1 to X3 along the path X1 → X2 → X3.
▶ In the fork, association flows from X1 to X3 along the path X1 ← X2 → X3.
▶ In general, the flow of association is symmetric.

X1 X2 X3

(a) Chain

X1

X2

X3

(b) Fork

Fig. 2.3: Chain and fork with flow of association drawn as a dashed red arc.
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Chain and Fork II

▶ When we condition on X2 in both graphs, it blocks the flow of association from X1 to X3., i.e.,
X1 ⊥ X3 | X2.

▶ This is because of the local Markov assumption; each variable can locally depend on only its
parents.

X1 X3X2

(a) Chain

X1 X3

X2

(b) Fork

Fig. 2.4: Chain and fork with association blocked by conditioning on X2.
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Chain and Fork III

▶ For chains, we can factorize P(x1, x2, x3) as follows:

P(x1, x2, x3) = P(x1)P(x2 | x1)P(x3 | x2)

Then by the Bayes’ rule, we have

P(x1, x3 | x2) =
P(x1, x2, x3)

P(x2)

=
P(x1)P(x2 | x1)P(x3 | x2)

P(x2)

=
P(x1, x2)

P(x2)
P(x3 | x2)

= P(x1 | x2)P(x3 | x2)

▶ The flow of association is symmetric, whereas the ow of causation is not.

▶ Under the causal edges assumption (Assumption 2.3), causation only flows in a single direction.
Causation only flows along directed paths.
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Immorality and Colliders I

▶ We have an immorality when we have a child whose two parents do not have an edge connect-
ing them.

▶ The child is known as a collider.

X1 X3

X2

(a) Immorality

X1 X3

X2

(b) Immorality with association
blocked by a collider.

X1 X3

X2

(c) Immorality with association un-
blocked by conditioning on the col-
lider.

Fig. 2.5: Immorality
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Immorality and Colliders II

▶ In an immorality, X1 ⊥ X3.

P(x1, x3) = ∑
x2

P(x1, x2, x3)

= ∑
x2

P(x1)P(x3)P(x2 | x1, x3)

= P(x1)P(x3)∑
x2

P(x2 | x1, x3)

= P(x1)P(x3)

▶ Conditioning on a collider can turn a blocked path into an unblocked path.

▶ This is sometimes referred to as selection bias.

▶ Conditioning on descendants of a collider also induces association in between the parents of the
collider.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 33 / 176



d-separation I

Definition 2.3 (Blocked Path)

A path between nodes X and Y is blocked by a (potentially empty) conditioning set Z if either of
the following is true:

1. Along the path, there is a chain · · · → W → · · · or a fork · · · ← W → · · · , where W is
conditioned on (W ∈ Z).

2. There is a collider W, on the path that is not conditioned on (W ̸∈ Z) and none of its descen-
dants are conditioned on (de(W) ̸⊆ Z).

Definition 2.4 (d-Separation)

Two (sets of) nodes X and Y are d-separated by a set of nodes Z if all of the paths between (any
node in) X and (any node in) Y are blocked by Z.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 34 / 176



d-separation II

▶ Similarly, if there exists at least one path between X and Y that is unblocked, then we say that X
and Y are d-connected.

▶ d-separation is such an important concept because it implies conditional independence.

▶ X ⊥G Y | Z (X ⊥P Y | Z) denotes that X and Y are d-separated in the graph G (the distribution
P) when conditioning on Z.

Theorem 2.1

Given that P is Markov with respect to G (satisfies the local Markov assumption, Assumption 2.1),
if X and Y are d-separated in G conditioned on Z , then X and Y are independent in P conditioned
on Z. We can write this succinctly as follows:

X ⊥G Y | Z =⇒ X ⊥P Y | Z (2.1)
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d-separation III

▶ We call Equation ( 2.1) the global Markov assumption.

▶ Theorem 2.1 tells us that the local Markov assumption implies the global Markov assumption.

▶ The local Markov assumption, global Markov assumption, and the Bayesian network factoriza-
tion are all equivalent.

▶ We will use Markov assumption to refer to these concepts as a group, or we will simply say P is
Markov with respect to G.
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Flow of Association and Causation

▶ We refer to the flow of association along directed paths as causal association.
▶ A common type of non-causal association that makes total association not causation is confound-

ing association.
▶ d-separation implies association is causation.

T Y

X

confounding association

causal association

Fig. 2.6: Causal graph depicting an example of how confounding association and causal association flow.
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do-operator I

▶ In the regular notation for probability, we have conditioning, but that isn’t the same as interven-
ing.

▶ Conditioning on T = t just means that we are restricting our focus to the subset of the popula-
tion to those who received treatment t.

▶ In contrast, an intervention would be to take the whole population and give everyone treatment
t.

▶ We will denote intervention with the do-operator: do(T = t).
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do-operator II

� Causal Models ��

Population Conditioning InterveningSubpopulations

oror

) = 1) = 1) = 0

) = 0

do() = 1)

do() = 0)

Figure �.�: Illustration of the difference between conditioning and intervening

We will often work with full distributions like %(. | do(C)), rather than
their means, as this is more general; if we characterize %(. | do(C)), then
we’ve characterized E[. | do(C)]. We will commonly refer to %(. | do() =
C)) and other expressions with the do-operator in them as interventional
distributions.

Interventional distributions such as %(. | do() = C)) are conceptually
quite different from the observational distribution %(.). Observational
distributions such as %(.) or %(. ,) ,-) do not have the do-operator in
them. Because they don’t have the do-operator, we can observe data from
them without needing to carry out any experiment. This is why we call
data from %(. ,) ,-) observational data. If we can reduce an expression
& with do in it (an interventional expression) to one without do in it (an
observational expression), then & is said to be identifiable. An expression
with a do in it is fundamentally different from an expression without a
do in it, despite the fact that in do-notation, do appears after a regular
conditioning bar. As we discussed in Section �.�, we will refer to an
estimand as a causal estimand when it contains a do-operator, and we
refer to an estimand as a statistical estimand when it doesn’t contain a
do-operator.

Whenever, do(C) appears after the conditioning bar, it means that ev-
erything in that expression is in the post-intervention world where the
intervention do(C) occurs. For example, E[. | do(C), / = I] refers to the
expected outcome in the subpopulation where / = I after the whole
subpopulation has taken treatment C. In contrast, E[. | / = I] simply
refers to the expected value in the (pre-intervention) population where
individuals take whatever treatment they would normally take ()). This
distinction will become important when we get to counterfactuals in
Chapter ��.

Fig. 3.1: Illustration of the difference between conditioning and intervening
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do-operator III

▶ For example, we can write the distribution of the potential outcome Y(t) as follows:

P(Y(t) = y) ≜ P(Y = y | do(T = t)) ≜ P(y | do(t))

Also, we can similarly write the ATE (average treatment effect) when the treatment is binary as
follows:

ATE = E[Y | do(T = 1)]−E[Y | do(T = 0)]

▶ We will commonly refer to P(y | do(t)) and other other expressions with the do-operator in
them as interventional distributions.

▶ If we can reduce an expression Q with do in it (an interventional expression) to one without do
in it (an observational expression), then Q is said to be identifiable.

▶ we will refer to an estimand as a causal estimand when it contains a do-operator, and we refer
to an estimand as a statistical estimand when it doesn’t contain a do-operator.
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Modularity I

▶ We refer to the causal mechanism that generates Xi as the conditional distribution of Xi given all
of its causes: P(xi | pai).

▶ In order to get many causal identification results, the main assumption we will make is that
interventions are local.

▶ More specifically, we will assume that intervening on a variable Xi only changes the causal
mechanism for Xi; it does not change the causal mechanisms that generate any other variables.

Assumption 3.1 (Modularity / Independent Mechanisms / Invariance)

If we intervene on a set of nodes S ⊆ {1, ..., n}, setting them to constants, then for all i , we have
the following:

1. If i ̸∈ S, then P(xi | pai) remains unchanged.

2. If i ∈ S, then P(xi | pai) = 1 if xi is the value that Xi was set to by the intervention;
otherwise, P(xi | pai) = 0.
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Modularity II

▶ In the second part, we could have alternatively said P(xi | pai) = 1 if xi is consistent with the
intervention and 0 otherwise.

▶ The modularity assumption is what allows us to encode many different interventional distribu-
tions all in a single graph.

▶ The causal graph for interventional distributions is simply the same graph that was used for the
observational joint distribution, but with all of the edges to the intervened node(s) removed.

▶ The graph with edges removed is known as the manipulated graph.
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Modularity III

T Y

X

(a) Causal graph in the observa-
tional setting.

t Y

X

(b) Manipulated graph when inter-
vening T to t.

Fig. 3.2: Causal graph and manipulated graph.

▶ Taking the modularity assumption (Assumption 3.1) and the Markov assumption (the other key
principle) together gives us causal Bayesian networks.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 44 / 176



Truncated Factorization

▶ Bayesian network factorization (Definition 2.1)

P(x1, ..., xn) = ∏
i

P(xi | pai)

▶ If we intervene on some set of nodes S and assume modularity, then all of the factors should
remain the same except the factors for Xi ∈ S.

▶ Those factors should change to 1 because those variables have been intervened on.

Proposition 3.1 (Truncated Factorization)

We assume that P and G satisfy the Markov assumption and modularity. Given, a set of interven-
tion nodes S, if x is consistent with the intervention, then

P(x1, ..., xn | do(S = s)) = ∏
i ̸∈S

P(xi | pai)

Otherwise, P(x1, ..., xn | do(S = s)) = 0.
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Revisit "Association is Not Causation" I

▶ To identify the causal quantity P(y | do(t)).

▶ The distribution P is Markov with respect to the graph in Figure 3.3.

T Y

X

Fig. 3.3: Simple causal structure where X confounds the effect of T on Y and X is the only confounder.

▶ The Bayesian network factorization gives us

P(y, t, x) = P(x)P(t | x)P(y | t, x)
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Revisit "Association is Not Causation" II

▶ When we intervene on the treatment, the truncated factorization gives us

P(y, x | do(t)) = P(x)P(y | t, x)

▶ We simply need to marginalize out X to get

P(y | do(t)) = ∑
x

P(y | t, x)P(x) (3.1)

▶ Replacing P(x) by P(x | t) in Equation (3.1), we have

∑
x

P(y | t, x)P(x | t) = ∑
x

P(y, x | t) = P(y | t)

▶ In this example, the difference between P(y | do(t)) and P(y | t) is the difference between P(x)
and P(x | t).
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Revisit "Association is Not Causation" III

▶ Assume that T is a binary variable.

▶ P(y | do(1)) is the distribution for Y(1). Then we can write the ATE as follows:

E[Y(0)−Y(1)] = ∑
y

yP(y | do(1))−∑
y

yP(y | do(0))

▶ Then plugging in Equation 3.1 yields a fully identified ATE.
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Backdoor Adjustment I

▶ We want to turn the causal estimand P(y | do(t)) into a statistical estimand.

▶ We’ll start with assuming we have a set of variables W that satisfy the backdoor criterion.

Definition 3.1 (Backdoor Criterion)

A set of variables W satisfies the backdoor criterion relative to T and Y if the following are true:
1. W blocks all backdoor paths from T to Y.

▶ there is a chain · · · → X → · · · or a fork · · · ← X → · · · and X ∈W.
▶ there is a collider on the path that is not in W and none of its descendants are in W.

2. W dose not contain any descendants of T.

▶ Satisfying the backdoor criterion makes W a sufficient adjustment set.
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Backdoor Adjustment II

Theorem 3.1 (Backdoor Adjustment)

Given the modularity assumption (Assumption 3.1), that W satisfies the backdoor criterion (Defi-
nition 3.1), and positivity (Assumption 1.2), we can identify the causal effect of T on Y:

P(y | do(t)) = ∑
w

P(y | t, w)P(w)

▶ Use the usual trick of conditioning on variables and marginalizing them out:

P(y | do(t)) = ∑
w

P(y | do(t), w)P(w | do(t))
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Backdoor Adjustment III

▶ Given that W satisfies the backdoor criterion, we can write

∑
w

P(y | do(t), w)P(w | do(t)) = ∑
w

P(y | t, w)P(w | do(t))

This follows from the modularity assumption.

▶ It can’t be through any path that has an edge into T because T doesn’t have any incoming edges
in the manipulated graph. Thus, P(w | do(t)) = P(w)

∑
w

P(y | t, w)P(w | do(t)) = ∑
w

P(y | t, w)P(w)

▶ Relation to d-separation. We can use the backdoor adjustment if W d-separates T from Y in the
manipulated graph.
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Backdoor Adjustment and Potential Outcomes I

▶ Recall Theorem 1.1

E[Y(1)−Y(0)] = EX [E[Y | T = 1, X]−E[Y | T = 0, X]]

▶ We can derive this from the more general backdoor adjustment in a few steps.

▶ First, we take an expectation over Y:

E[Y | do(t)] = ∑
y

yP(y | do(t))

= ∑
y

∑
w

yP(y | t, w)P(w)

= ∑
w

E[Y | t, w]P(w)

= EWE[Y | t, W]
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Backdoor Adjustment and Potential Outcomes II

▶ Then we look at the difference between T = 0 and T = 1:

E[Y | do(1)]−E[Y | do(0)] = EW [E[Y | T = 1, W]−E[Y | T = 0, W]]

The do-notation E[Y | do(t)] is just another notation for the potential outcomes E[Y(t)].

▶ Recall the conditional exchangeability (Assumption 1.2)

(Y(1), Y(0)) ⊥ T |W

However, we had no way of knowing how to choose W. Using graphical causal models, we
know how to choose a valid W: we simply choose W so that it satisfies the backdoor criterion.
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Structural Equations I

▶ The equals sign in mathematics does not convey any causal information.

▶ We need something asymmetric.

▶ A is a cause of B, meaning that changing A results in changes in B, but changing B does not
result in changes in A.

▶ Then we can write the following structural equation:

B := f (A)

where f is some function that maps A to B. The mapping between A and B is deterministic.

▶ Ideally, we’d like to allow it to be probabilistic, which allows room for some unknown causes of
B that factor into this mapping.

B := f (A, U)

where U is some unobserved random variable.
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Structural Equations II

A

B

U

Fig. 3.4: Graph for simple structural equation. The dashed node U means that U is unobserved.

▶ The unobserved U is analogous to the randomness that we would see by sampling units (indi-
viduals).

▶ There are analogs to every part of the potential outcome Yi(t): B is the analog of Y, A = a is the
analog of T = t , and U is the analog of i.

▶ Although the mapping is deterministic, because it takes a random variable U as input, it can
represent any stochastic mapping, so structural equations generalize the probabilistic factors
P(xi | pai).
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Structural Causal Model I

▶ A causal mechanism that generates a variable
is the structural equation that corresponds to
that variable.

▶ We write structural equations for Figure 3.5
below:

M :
B := fB(A, UB)

C := fC(A, B, UC)

D := fD(A, C, UD)

(3.2)

▶ The variables that we write structural equa-
tions for are known as endogenous variables.

▶ In contrast, exogenous variables are variables
who do not have any parents in the causal
graph

A

B

C

D

UB

UC

UD

Fig. 3.5: Graph for the structural equations in Equation (3.2).
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Structural Causal Model II

Definition 3.2 (Structural Causal Model (SCM))

A structural causal model is a tuple of the following sets:

1. A set of endogenous variables V.

2. A set of exogenous variables U.

3. A set of functions f , one to generate each endogenous variable as a function of other variables.

▶ If the causal graph contains no cycles (is a DAG) and the noise variables U are independent,
then the causal model is Markovian.

▶ If the causal graph doesnt contain cycles but the noise terms are dependent, then the model is
semi-Markovian.

▶ The graphs of non-Markovian models contain cycles.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 57 / 176



Interventions I

▶ The intervention do(T = t) simply corresponds to replacing the structural equation for T with
T := t.

▶ For example, consider the following causal model M with corresponding causal graph in Fig-
ure 3.6.

M :
T := fT(X, UT)

Y := fY(X, T, UY)

T Y

X

(a) Basic causal graph.

t Y

X

(b) do(T = t).

Fig. 3.6: Causal graph and manipulated graph.
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Interventions II

▶ If we then intervene on T to set it to t, we get the interventional SCM Mt

M :
T := t
Y := fY(X, T, UY)

▶ The fact that do(T = t) only changes the equation for T and no other variables is a consequence
of the modularity assumption.

Assumption 3.2 (Modularity Assumption for SCMs)

Consider an SCM M and an interventional SCM Mt that we get by performing the intervention
do(T = t). The modularity assumption states that M and Mt share all of their structural equations
except the structural equation for T , which is T := t in Mt.
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Collider Bias I

▶ In Theorem 3.1, we specify that W dose not contain any descendants of T.

▶ There are two categories of things that could go wrong if we condition on descendants of T.

Case 1: We block the flow of causation from T to Y.

T Y

W

M

(a) Causal graph where all causa-
tion is blocked by conditioning on
M.

T Y

W

M

(b) Causal graph where part of the
causation is blocked by condition-
ing on M.

Fig. 3.7: M blocks the flow of causation from T to Y.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 60 / 176



Collider Bias II

▶ If we condition on a node that is on a directed path from T to Y, then we block the flow of
causation along that causal path (Figure 3.7 (a)).

▶ We will refer to a node on a directed path from T to Y as a mediator, as it mediates the effect of T
on Y.

▶ In Figure 3.7 (b), only a portion of the causal flow is blocked by M. This is because causation
can still flow along the T → Y edge.

▶ In this case, we will get a non-zero estimate of the causal effect, but it will still be biased, due to
the causal ow that M blocks.
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Collider Bias III

Case 2: We induce non-causal association between T and Y.

▶ If we condition on a descendant of T that isn’t a media-
tor, it could unblock a path from T to Y that was blocked
by a collider.

▶ In Figure 3.8, conditioning on Z , or any descendant of
Z in a path like this, will induce collider bias.

T Y

W

Z

Fig. 3.8: Causal graph where conditioning on
the collider Z induces bias..
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Collider Bias IV

▶ Conditioning on Z in Figure 3.9 (a)?

▶ Graphs are frequently drawn without
explicitly drawing the noise variables.

▶ Making M’s noise variable explicit, we
get Figure 3.9 (b).

▶ T → M← UM forms an immorality.

▶ There is now induced association flow-
ing between T and UM through the edge
T → M.

▶ Two types of association getting tangled
up along the T → M edge, making the
observed association between T and Y
not purely causal.

T YM

W

Z

(a) Causal graph where the child of
a mediator is conditioned on.

T YM

W

Z

UM

(b) Magnified causal graph where
the child of a mediator is condi-
tioned on.

Fig. 3.9: M blocks the flow of causation from T to Y.
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Collider Bias V

▶ Note that we actually can condition on some descendants of T without inducing non-causal
associations between T and Y.

▶ However, this can get a bit tricky, so it is safest to just not condition on any descendants of T, as
the backdoor criterion prescribes.

▶ This rule is usually described as not conditioning on any post-treatment covariates.

M-Bias.

▶ Unfortunately, even if we only condition on pretreat-
ment covariates, we can still induce collider bias.

▶ Conditioning on the collider Z2 in Figure 3.10 will open
up a backdoor path, along which non-causal association
can flow.

▶ This is known as M-bias.

T Y

Z1 Z3

Z2

Fig. 3.10: Causal graph depicting M-bias.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 64 / 176



Contents

Potential Outcome Framework
Causal Graph
Causal Models
Causal Supervised Learning
Invariant Feature Learning

Deconfound Data
Deconfound Intermediate Representations
Deconfound Models during Training

Invariant Mechanism Learning

Causal Generative Modeling
Structural Assignment Learning
Causal Disentanglement

Causal Explanations
Feature Attributions
Contrastive Explanations

Causal Fariness

Causal Reinforcement Learning

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 65 / 176



Causal Supervised Learning I

▶ One of the most fundamental principles in supervised learning is to assume that our data D is
independent and identically distributed (i.i.d.).

▶ It implies that unseen inputs occurring when the model is in production follow the same distri-
bution as the training set.

▶ As an alternative to the i.i.d. assumption, we can assume that our data is sampled from inter-
ventional distributions governed by an SCM.

▶ For a given dataset generated across a set of environments E ,
{(

xe
i , ye

i
)N

i=1

}
e∈E

, we view each
environment e ∈ E as being sampled from a separate interventional distribution.

▶ In this section, we will discuss two classes of methods that aim to learn domain-robust, trans-
ferable features or mechanismsInvariant Feature Learning and Invariant Mechanism Learning.
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Causal Supervised Learning II

Fig. 4.1: Cows in ’common’ contexts (e.g., Alpine pastures) are detected and classified correctly (A), while cows
in uncommon contexts (beach, waves, and boat) are not detected (B).
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Invariant Feature Learning I

▶ Invariant feature learning (IFL) is the task of identifying features of our data X that are predic-
tive of Y across a range of environments E .

▶ From a causal perspective, the causal parents pa(Y) are always predictive of Y under any inter-
ventional distribution except where Y itself has been intervened upon.

▶ We can abstract a complex SCM into a simple SCM by collecting the causal parents of Y into one
variable, while the other variables are collected into another.

▶ The most general abstraction is the Style and Content Decomposition (SCD).
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Invariant Feature Learning II

Definition 4.1 (Style and Content Decomposition)

The style and content decomposition (SCD) is a causal graph of a data generating process (DGP)
for X and Y . We call S the style variables and C the content variables, where both are assumed
to be latent. The content variables group all of the causal parents of Y, pa(Y), while the style
variables group the rest of the variables. The generations of X and Y follow the distributions

X ∼ p(x | s, c), Y ∼ p(y | c)

Definition 4.2 (Invariant Feature Learning)

Invariant Feature Learning (IFL) aims to identify the content features C that cause both X and Y ,
and a mapping p(y | c), such that

C = Φ(X), s.t. Y ∼ p(y | c)
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Invariant Feature Learning III

We will introduce IFL through the following aspects

▶ Deconfound data (data augmentation) [link]

▶ Deconfound intermediate representations [link]

▶ Deconfound models during training [link]

We select one representative work for each category.
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Deconfound Data

▶ T itle: Explaining the Efficiency of Counterfactually Augmentation Data

▶ Author: Divyansh Kaushik, Amrith Setlur, Eduard Hovy, Zachary C. Lipton (CMU)

▶ Published: International Conference on Learning Representations, ICLR 2021

▶ Counterfactually Augmentation Data (CAD): obtained via a human-in-the-loop process in
which given some documents and their (initial) labels, humans must revise the text to make
a counterfactual label applicable.

▶ Models trained on the augmented (original and revised) data appear, empirically, to rely less on
semantically irrelevant words and to generalize better out of domain.

▶ Provide some insights that help to explain the efficacy of CAD.
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Introduction I

▶ Recently in NLP, Kaushik et al. (2020) proposed Counterfactually Augmented Data (CAD), inject-
ing causal thinking into real world settings by leveraging human-in-the-loop feedback.

▶ Human editors are presented with document-label pairs and tasked with editing documents to
render counterfactual labels applicable.

▶ The instructions restrict editors to only make modifications that are necessary to flip the label’s
applicability.

▶ The process can be viewed as the identification of casually relevant features (versus spurious
features).

▶ Models trained on CAD enjoyed out-of-domain performance benefits.

Research Questions:

1. What is the assumed causal structure underlying settings where CAD might be effective?

2. What are the principles underlying its out-of-domain benefits?
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Introduction II

3. Must humans really intervene, or could automatic feature attribution methods, e.g., attention,
or cheaper feedback mechanisms, e.g., feature feedback, produce similar results?

Consider linear Guassian model: causal setting and anti-causal setting (Figure 4.2).

Fig. 4.2: Toy causal models with one hidden confounder. In (a) and (c), the observed covariates are x1, x2. In (b)
and (d), the observed covariates are x̃1, x2. In all cases, y denotes the label.
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Causal Setting I

Consider the linear model

Y = Xβ + ϵ

where Y ∈ Rn, X ∈ Rn×p, β ∈ Rp, and ϵ ∈ N
(
0, σ2

ϵ In
)

an i.i.d. noise term. The OLS estimate βols is
given by

βols =
Cov(X, Y)
Cov(X, X)

If we observe only two covariates (p = 2), then:

βols
1 =

σ2
x2

σx1,y − σx1,x2 σx2,y

σ2
x1 σ2

x2 − σ2
x1,x2

, βols
2 =

σ2
x1

σx2,y − σx1,x2 σx1,y

σ2
x1 σ2

x2 − σ2
x1,x2

(4.1)
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Causal Setting II

▶ We know focus on the casual setting (Figure 4.2(a), (b)).

z = uz, uz ∼ N
(

0, σ2
uz

)
x1 = bz + ux1 , ux1 ∼ N

(
0, σ2

ux1

)
x2 = cz + ux2 , ux2 ∼ N

(
0, σ2

ux2

)
y = ax1 + uy, uy ∼ N

(
0, σ2

uy

)
.

Applying OLS, we obtain βols
1 = a, βols

2 = 0.

▶ If we only observe x1 via a noisy proxy x̃1 ∼ N
(

x1, σ2
ux1

+ σ2
ϵx1

)
(Figure 4.2(b)).
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Causal Setting III

▶ Assuming ϵx1 ⊥ (x1, x2, y), from Equation (4.1), we get

β̂ols
1 =

a
(

σ2
uz

(
b2σ2

ux2
+ c2σ2

ux1

)
+ σ2

ux1
σ2

ux2

)
σ2

uz

(
b2σ2

ux2
+ c2σ2

ux1

)
+ σ2

ux1
σ2

ux2
+ σ2

ϵx1

(
c2σ2

uz + σ2
ux2

)
β̂ols

2 =
acbσ2

ϵx1
σ2

uz

σ2
uz

(
b2σ2

ux2
+ c2σ2

ux1

)
+ σ2

ux1
σ2

ux2
+ σ2

ϵx1

(
c2σ2

uz + σ2
ux2

)
(4.2)

▶ β̂ols
1 ∝ 1

σ2
ϵx1

. As σ2
ϵx1

increases, |β̂ols
1 | decreases and |β̂ols

2 | increases.

▶ limσ2
ϵx1
→∞ β̂ols

1 = 0, whereas β̂ols
2 converges to a finite non-zero value.

▶ Only observing a noisy version of x2 will not affect our OLS estimates.

▶ Under perfect measurement, the causal variable d-separates the non-causal variable from the
label.
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Causal Setting IV

▶ Under observation noise, a predictor will rely on the non-causal variable (Equation (4.2)).

▶ Moreover, when the causal feature x1 is noisily observed, additional observation noise on non-
causal features x2 yields models that are more reliant on causal features. (Cannot find evidence
in the paper)

▶ In a qualitative sense, the process of generating CAD is the intervention on the casual features.

▶ For each example, we produce two sets of values of x1, one such that the label is applicable and
one such that it is not applicable. One is given in the dataset, and the other is produced via the
revision.
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Anticausal Setting I

▶ Now consider the anticausal setting (Figure 4.2(c), (d)).

z = uz, uz ∼ N
(

0, σ2
uz

)
q = az + uq, uq ∼ N

(
0, σ2

uq

)
y = bz + uy, uy ∼ N

(
0, σ2

uy

)
x2 = cq + ux2 , ux1 ∼ N

(
0, σ2

ux1

)
x1 = dy + ux1 , ux2 ∼ N

(
0, σ2

ux2

)
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Anticausal Setting II

If we were to solve the linear regression problem y = x1β1 + x2β2 + β0, we get

βols
1 =

d
(

a2c2σ2
uz

σ2
uy

+
(

c2σ2
uq
+ σ2

ux2

) (
b2σ2

uz
+ σ2

uy

))
(

d2b2σ2
uz + σ2

ux1 + d2σ2
uy

) (
σ2

ux2 + c2σ2
uq

)
+
(

σ2
ux1 + d2σ2

uy

)
c2a2σ2

uz

βols
2 =

abcσ2
uz

σ2
ux1(

d2b2σ2
uz + σ2

ux1 + d2σ2
uy

) (
σ2

ux2 + c2σ2
uq

)
+
(

σ2
ux1 + d2σ2

uy

)
c2a2σ2

uz

(4.3)

▶ Similarly, we observe a noisy version x̃1:

x̃1 = x1 + ϵx1 , ϵx1 ∼ N
(

0, σ2
ϵx1

)
, ϵ ⊥ x2, y

Then we need to replace σ2
ux1

with σ2
ux̃1

in Equation (4.3):

σ2
ux̃1

= σ2
ux1

+ σ2
ϵx1
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Anticausal Setting III

▶ Finally we get

β̂ols
1 =

βols
1

1 + λx1
ac

β̂ols
2 =

βols
2

1 + λx1
ac

[
1 +

σ2
ϵx1

σ2
ux1

]
(4.4)

λx1
ac =

σ2
ϵx1

(
c2a2σ2
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) (
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uq

)
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ux1
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)
c2a2σ2
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(4.5)

As σ2
ϵx1

increases, |β̂ols
1 | decreases and |β̂ols

2 | increases.

▶ If we observe a noisy version of x2, we find that as σ2
ϵx2

increases, |β̂ols
1 | increases and |β̂ols

2 |
decreases.

▶ As observation noise on the non-causal feature x2 increases, we expect the learned predictor to
rely more on the causal feature.
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Anticausal Setting IV

▶ In this interpretation, we think of CAD as a process by which we (the designers of the exper-
iment) intervene on the label itself and the human editors, play the role of a simulator that we
imagine to be capable of generating a counterfactual example, holding all other latent variables
constant.

▶ Note that by intervening on the label, we d-separate it from the spurious correlate x2.
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Experiment Setting I

Hypotheses

1. If spans edited to generate counterfactually revised data (CRD) are analogous to the causal (or
anticausal) variables, then noising those spans (e.g. by random word replacement) should lead
to models that rely more on noncausal features and perform worse on out of domain data.

2. Noising unedited spans should have the opposite behavior, leading to degraded in-domain
performance, but comparatively better out-of-domain performance.

3. Whether the feedback from human workers is yielding anything qualitatively different from
what might be seen with spans marked by automated feature attribution methods such as attention
and saliency.

4. Is CAD better than automatic sentiment flipping methods (e.g., text style transfer algorithm)?

Settings

▶ Tasks: sentiment analysis and NLI.
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Experiment Setting II

▶ All datasets are accompanied with human feedback (tokens deemed relevant to the label’s ap-
plicability) which we refer to as rationales.

▶ In each document, we replace a fraction of rationale (or non-rationale) tokens with random
tokens sampled from the vocabulary.

▶ In the first set of experiments, we inject noise into rationales and non-rationales marked by
human and automated feature attribution methods.

▶ In the second set of experiments, we train models on original, CAD, and original & sentiment
flipped reviews, which are produced by text style transfer methods.
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Fig. 4.3: Change in classifier accuracy as noise is injected on rationales/non-rationales for IMDb reviews from
Kaushik et al. (2020). The vertical dashed line indicates the fraction of median length of non-rationales equal to
the median length of rationales.



Experiment Results I

In Figure 4.3,

▶ All classifiers are trained on the original 1.7k IMDb reviews from Kaushik et al. (2020).

▶ In-sample test: models are tested on the IMDb test set.

▶ CRD: models are tested on counterfactually revised data.

Figure 4.3 (a).

▶ The SVM classifier experiences a drop of ≈ 11% by the time all rationale tokens are replaced
with noise. However, it experiences an 28.7% drop in accuracy on Yelp reviews.

▶ However, as more non-rationales are replaced with noise, in-sample accuracy for SVM goes down
by ≈ 10% but increases by ≈ 1.5% on Yelp.

▶ For BERT, in-sample accuracy decreases by only 16.1% and only 13.6% on Yelp.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 85 / 176



Experiment Results II

Figure 4.3 (b) and (c).

▶ We obtain different results using rationales identified via feature feedback and gradient based
feature attribution.

▶ While we might not expect spurious signals to be as reliable out of domain, that does not mean
that they will always fail.

▶ In such settings, even though noising non-causal features would lead to models relying more
on causal features, this may not result in better out-of-domain performance.
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Experiment Results III

We can observe similar patterns in NLI tasks. But, for various models the drops in both in-sample
and out-of-domain accuracy are greater in magnitude when noise is injected in rationales versus
when it is injected in non-rationales. This is opposite to what we observe in sentiment analysis.
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Experiment Results IV

▶ We use SOTA transfer methods to con-
vert Positive reviews into Negative and
vice versa.

▶ Ideally, we would expect these methods
to preserve a document’s content while
modifying the attributes that relate to
sentiment.

▶ Sentiment classifiers trained on original
and sentiment-flipped reviews often give
better out-of-domain performance.

▶ However, models trained on CAD per-
form even better across all datasets, hint-
ing at the value of human feedback.
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Conclusion

▶ Simple analysis on toy linear Gaussian models + a large-scale empirical investigation on senti-
ment analysis and NLI tasks→ to understand the efficacy of CAD.

▶ Data corrupted by adding noise to rationale spans (analogous to adding noise to causal features)
will degrade out-of-domain performance, while noise added to non-causal features may make
models more robust out-of-domain.

▶ Models trained on the augmentation of original data and revised data generated by style transfer
methods had better out-of-domain generalization in some cases compared to models trained on
original data alone, but performed worse than models trained on CAD.
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Deconfound Intermediate Representations

▶ T itle: Causal Transportability for Visual Recognition

▶ Author: Chengzhi Mao1, Kevin Xia1, James Wang1, Hao Wang2, Junfeng Yang1, Elias
Bareinboim1, Carl Vondrick1 (1Columbia University, 2Rutgers University)

▶ Published: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2022.

▶ Visual representations often contain robust and non-robust features.

▶ Image classifiers may perform poorly on out-of-distribution samples because spurious correla-
tions between non-robust features and labels can be changed in a new environment.

▶ Standard classifiers fail because the association between images and labels is not transportable
across settings.

▶ The causal effect, which severs all sources of confounding, remains invariant across domains.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 90 / 176



Introduction

▶ In this paper, we investigate visual representations for object recognition through the lenses of
causality.

▶ First, we will show that the association between image and label is not in generalizable (in causal
language, transportable) across domains.

▶ We then note that the causal effect from the input to the output, which severs any spurious cor-
relations, is invariant when the environment changes with respect to the features’ distributions.

▶ Getting the causal effect for natural images is challenging because there are innumerable unob-
served confounding factors within realistic data.

▶ Under some relatively mild assumptions, we will be able to extract the robust features from ob-
servational data through both causal and deep representations, and then use the representations
as proxies for identifying the causal effect without requiring observations of the confounding
factors.
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Probelm Formulation – Structural Modeling I

▶ X, Y: random variables related to images and labels. x, y: the specific instantiations of the pixels
and label.

▶ Consider a structural causal model (SCM) M that encodes a 4-tuple

⟨V = {X, Y} , U = {UX , UXY} ,F = { fX , fY} , P(U)⟩

▶ V is the set of observed variables (the image X and its label Y).

▶ U represents unobserved variables encoding external sources of variation not captured in the
image and the label themselves.

▶ F is the set of mechanisms { fX , fY}, which determine the generative processes of X and Y such
that X ← fX(UX , UXY) and Y ← fY(X, UXY).

▶ P(U) represents a probability distribution over the unobserved variables.
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Probelm Formulation – Structural Modeling II

More explanation on U:

▶ UXY is called concept vector, as it represents all underlying factors that produce both the core
features of the object in image x and its label, y.

▶ For example, one instantiation of UXY = uXY may encode the concepts of "flippers" and "wing",
which are translated into an image of a "waterbird" when passed into fX .

▶ UX represents nuisance factors, such as the background, that affect the generation process of the
image.

▶ fY may represent someone who is labeling image x and will have a conceptual understanding
of waterbird through uXY .

▶ Together, the underlying distribution over P (UXY , UX) combined with functions fX and fY

induce a distribution over P(X, Y), which is how data is generated.

▶ It is impossible to recover the structural functions (F ) and probability over the exogenous vari-
ables (P(U)) from observational data alone (P(V)).
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Modeling In vs. Out-of-Distribution Generalization I

▶ Out-of-distribution case (transportability problem): training data may come from a domain π

that differs from the test domain π∗.

▶ Assume that the labeling process and underlying concepts are consistent across domains (i.e., fY

and P(UXY) remain the same in both settings), but the generative process of the image X may
change (i.e., f ∗X and P∗(UX) may differ from fX and P(UX), respectively).

▶ In general, we do not know the true underlying mechanisms fX , f ∗X , and fY , nor can we observe
the immeasurably large space of P(UX , UXY).

▶ We can represent the structural invariances across domains by leveraging a graphical represen-
tation shown in Figure 4.4. The disparities across domains π and π∗ are usually modeled by a
transportability node called S, which can be interpreted as a switch across domains; i.e., fX will
be active if S = 0, and f ∗X otherwise.
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Modeling In vs. Out-of-Distribution Generalization II

Fig. 4.4: Causal graph for out-of-distribution image classification (top left). S, the transportability node, points
to nodes with changes between domains, where X combines "waterbird" with "water background" during the
training (S = 0) and "water bird" with "land background" at testing (S = 1) (top right).
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Modeling In vs. Out-of-Distribution Generalization III

▶ In-distribution case: to learn P(Y | X), which leverages all possible information to maximize
the chance of predicting the correct label.

▶ However, given the way the data generation process is modeled, it is easy to see why this same
strategy fails in the out-of-distribution case.

▶ Since only data from domain π is given, we can only train a model on P(Y | X), which does not
adequately model P∗(Y | X).

Proposition 4.1

Let M and M∗ be the two underlying SCMs representing the source and target domains, π and
π∗, and compatible with the assumptions represented in the causal graph in Figure 4.4. Then,
P∗(Y | X) ̸= P(Y | X).

▶ In words, the classifier represented by the quantity P(Y | X), in π, is not transportable across
settings and cannot be used to make statements about P∗(Y | X).
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Modeling In vs. Out-of-Distribution Generalization IV

▶ By conditioning on X, the variables Y and S become d-connected via the path through UXY , i.e.,
P(Y | X, S = 0) ̸= P(Y | X, S = 1).

Proposition 4.2

Let M and M∗ be the two underlying SCMs representing the source and target domains, π and
π∗, and compatible with the assumptions represented in the causal graph in Figure 4.4. Then,
P∗(Y | do(X)) = P(Y | do(X)).

▶ P(Y | do(X)): remove all arrows towards X, including the S-node, by forcing X to take a certain
value, say x.

▶ Regardless of the change in the mechanism of f ∗X and P∗(UX), it is guaranteed that the causal
effect of X on Y will remain invariant across π and π∗. In causal language, P∗(Y | do(X)) is
transportable across settings.
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Identifiability

Proposition 4.3

Let M be the SCM representing domain π and described through the causal diagram G in Fig-
ure 4.4. The interventional distribution P(Y | do(X)) is not identifiable from G and the observa-
tional distribution P(X, Y).

▶ Non-identifiability suggests that there are multiple SCMs that are consistent with P(X, Y) and
that induce different distributions P(Y | do(X)).

▶ Some prior work has assumed that all back-door variables can be observed, which means that
all the variations represented originally in the unobserved confounder UXY are, in some sense,
captured by the model.

▶ In most image datasets that contain only images and their labels, the assumption that all back-
door variables (and sources of co-variation) are observable is overly stringent.

▶ Our goal now is to identify the effect of X on Y without having knowledge of the back-door
variables.
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Neural Representation Approach to Derive a Causal Estimand I

Assumption 4.1 (Decomposition)

Each image X can be decomposed into causal factors Z and spurious factors W (i.e. X = (Z, W)),
and the generative process follows the causal graph in Figure 4.5.

Fig. 4.5: Expanded causal model with decomposition of image X and representation R. Gray nodes denote
observed variables.
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Neural Representation Approach to Derive a Causal Estimand II

▶ We build two neural network models: P̂(R | X), which generates visual representations R from
images X, and P̂(Y | R, X), which uses both R and X to classify Y.

▶ W contains all of the lower level signals or patches of the image, which may contain concepts
confounding with Y.

▶ Z refines these patches into interpretable factors, which is what is visually used by the labeler.
Since Z is a direct function of W, these factors are not confounded.

Assumption 4.2 (Sufficient representation)

The neural representations R ∼ P̂(R | Z, W) are learned such that they do not lose information
w.r.t. Z. In words, for two samples r1 and r2 from P̂(R | z1, w1) and P̂(R | z2, w2), respectively,
r1 ̸= r2 if z1 ̸= z2.

▶ The neural representation has enough capacity to represent unambiguously the causal factors.

▶ This assumption should hold in general given a proper choice of model for P̂(R | X).
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Neural Representation Approach to Derive a Causal Estimand III

Assumption 4.3 (Selective prediction)

Consider two images of X, x = (z, w) and x′ = (z′, w′), with neural output P̂, and the true
labeling probability P. Let R = r be a representation of x, sampled from P̂(R | x). Then, P̂(Y =

y | R = r, X = x′) = P(y | z, w′).

▶ Once inputted with two images x and x′ (x in its representation form, r), the network will make
the same prediction y as if it were the true labeler when inputted with the causal feature z, from
the first image, and the spurious feature w′, from the second image.

▶ P̂(Y | R, X) can learn causal features from R.
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Causal Identification I

Theorem 4.1 (Causal Identification)

Given the assumptions about the generative process encoded in the causal graph in Figure 4.5 to-
gether with Assumption 4.1, 4.2, 4.3, the causal effect can be computed using neural representation
R via

P(Y = y | do(X = x)) = ∑
r

P̂(r | x)∑
x′

P̂(y | r, x′)P(x′) (4.6)

P(y | do(x)) = P(y | do(z, w)) (Assumption 4.1)

= P(y | do(z)) (Do-Calculus Rule 3)

= ∑
w′

P
(
y | z, w′

)
P
(
w′
)

(Backdoor Criterion)

= ∑
z′ ,w′

P
(
y | z, w′

)
P
(
z′, w′

)
(Marginalization)
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Causal Identification II

By Assumption 4.2 and 4.3, the last expression can be rewritten as

= ∑
x′

P̂(y | r, x′ = (z′, w′))P(x′)

where r is sampled from P̂(R | x). Since Assumption 4.3 applies for any sampled value of R, we can
average across samples of R,

= ∑
r

P̂(r | x)∑
x′

P̂(y | r, x′ = (z′, w′))P(x′)

▶ The intuition behind this derivation is that if the image x can be decomposed into causal factors
(z) and spurious factors (w), as shown in Figure 4.5, then the causal effect is isolated in z, and
w can be ignored.

▶ By conditioning on W = w′, using another image, all the backdoor paths from Z to Y are
blocked, which leads to an identifiable result.
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Causal Identification III

▶ We need to construct the neural models to satisfy the three assumptions and properly estimate
P(X), P(R | X), and P(Y | X, R).

▶ The term P(X) is straightforward to calculate because we can assume it is sampled from a uni-
form distribution.
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Constructing P(R | X) and P(Y | R, X) I

Some classes of models that are valid ways of estimating P̂(R | X) while satisfying Assumption 4.2.

▶ Variational Auto-Encoder (VAE).

▶ Constrastive Learning: given enough negative examples, contrastive learning will produce rep-
resentations that are invariant under data augmentation, which still maintains all causal infor-
mation from the input images.

▶ Pretrained models from larger dataset.

To properly estimate Equation (4.6), we also need to estimate a P(Y | R, X) such that Assumption 4.3
is satisfied.

▶ In addition to the representation R, we use as input a bag of patches, which are subsampled from
input image X into the branch that takes the input X.

▶ A bag of image patches corrupts the global shape information and often contains local features
that are spurious, such as color, texture and background.

P̂(Y | R ∼ P̂(R | Z, W), X = (Z, W)) = P̂(Y | R ∼ P̂(R | Z, W), W)
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Constructing P(R | X) and P(Y | R, X) II

▶ During training, the image X and the representation R are sampled from the same instance.
During testing, the image X can be sampled from an arbitrary instance. (Seems inconsistent with
the pseudocode)

▶ The model P̂(Y | R, X) has limited capacity. Given that the model has learned the information
about W, learning W from R again will not further decrease the empirical loss. Thus, the model
will learn Z from the representation R and ignore the W from the representation.

▶ By limiting the capacity of P̂(Y | R, X), the model tends to use low-level features from the input
images X while using high-level deep features from the latent representation R.
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Algorithm I

▶ Line 6: sample random images X from
the same category as the representation
R.
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Algorithm II

▶ First randomly sample R (Line 3).

▶ Then, for each R, we sample images X from
random categories (Line 5).

▶ Make prediction through Theorem 4.1.
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Experiment Settings I

Datasets

▶ CMNIST: combine digits with different background colors from the training domain, creating
an out-of-distribution (OOD) dataset.

▶ WaterBird: contains two classes of foreground birds, the waterbird and the landbird, and two
types of backgrounds: water and land.

▶ ImageNet-Rendition: has renditions of 200 ImageNet classes, including art, cartoons, etc, which
is an OOD test set for ImageNet.

▶ ImageNet-Sketch: contains sketch of 1000 ImageNet classes without texture and color.

▶ ImageNet-9 Backgrounds Challenge: backgrounds are adversarially chosen on ImageNet.

Baselines

▶ ERM: Empirical Risk Minimization.

▶ GenInt: learns a causal classifier by steering the generative models to simulate interventions.
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Experiment Settings II

▶ RSC: uses representation self-challenging to improve generation to the OOD data.

▶ IRM (Invariant Risk Minimization): use domain index information.

Settings

▶ P̂(Y | X, R): 3 convolutional layers applied to X, concatenating the obtained feature with R, and
then using 2-layer fully connected network to predict Y.

▶ Ours: Nj = 256, Ni = 10.

▶ Ablation: Nj = 1 and Ni = 1.
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Results
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Spurious: the branch that conditions on the variable X of model P(Y | R, X).



Conclusion

▶ This paper focuses on the visual transportability problem.

▶ The association between image and label is not in generalizable across domains.

▶ The causal effect P(Y | do(X)) is invariant when the environment changes.

▶ This paper develops an algorithm which uses the deep representations R as proxies for identi-
fying the causal effect without requiring observations of the confounding factors.
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Deconfound Models

▶ T itle: Counterfactual Invariance to Spurious Correlations: Why and How to Pass Stress Tests

▶ Author: Victor Veitch1,2, Alexander D’Amour1, Steve Yadlowsky1, and Jacob Eisenstein1

(1Google Research, 2University of Chicago)

▶ Published: 35th Conference on Neural Information Processing Systems, NIPS 2021

▶ Stress test: check for spurious correlations by perturbing irrelevant parts of input data and see if
the model predictions change.

▶ Counterfactual invariance: a formalization of the requirement that changing irrelevant parts of
the input shouldn’t change model predictions.

▶ Provide practical schemes for learning (approximately) counterfactual invariant predictors
(without access to counterfactual examples).
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Introduction

▶ Stress test example: we might test a sentiment analysis tool by changing one proper noun for
another (tasty Mexican food to tasty Indian food).

▶ What is the connection between passing stress tests and model performance on prediction?

▶ How should we develop models that pass stress tests when our ability to generate perturbed
examples is limited?

▶ We will formalize passing stress tests as counterfactual invariance, a condition on how a predictor
should behave when given certain (unobserved) counterfactual input data.

▶ We will then derive implications of counterfactual invariance that can be measured in the observed
data.

▶ Regularizing predictors to satisfy these observable implications provides a means for achieving
(partial) counterfactual invariance.
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Counterfactual Invariance

▶ Consider the problem of learning a predictor f that predicts a label Y from covariates X.

▶ Predictions of f should be invariant to certain perturbations on X.

▶ Assume that there is an additional variable Z that captures information that should not influ-
ence predictions. However, Z maycausally influence the covariates X.

▶ Potential outcomes notation: X(z) is the conterfactual X when Z is set to z, leaving all else fixed.

Definition 4.3 (Counterfactual Invariance)

A predictor f is counterfactually invariant to Z if f (X(z)) = f (X(z′)) almost everywhere, for
all z, z′ in the sample space of Z. When Z is clear from context, we’ll just say the predictor is
counterfactually invariant.

The true causal structure fundamentally affects both the implications of counterfactual invariance, and
the techniques we use to achieve it.
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Causal Structure

Consider two common causal structures in this paper.

Fig. 4.6: Causal models for the data generating process. We decompose the observed covariate X into latent parts
defined by their causal relationships with Z and Y. Solid arrows denote causal relationships, while dashed lines
denote non-causal associations.
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Causal Direction

Consider the following example where X is a cause of Y (Figure 4.6 (a)).

▶ Goal: classify the quality of product reviews using the text of the product review X.

▶ Each review has a number of helpful votes Y (from site users).

▶ Interventions on the sentiment Z of the text change our prediction (e.g., "good shoes!" to "bad
shoes!").

Usually, the causal relationship between the text and Y and Z will be complex.

▶ Decompose the observed X into two parts defined by their causal relationships with Y and Z.

▶ X⊥Z : the part of X that is not causally influenced by Z (but may influence Y)

▶ X⊥Y : the part that does not causally influence Y (but may be influenced by Z)

▶ XY∧Z: the remaining part that is both influenced by Z and that influences Y
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Anti-Causal Direction

Consider the following example where Y causes X (Figure 4.6 (b)).

▶ Goal: predict the star rating Y of movie reviews from the text X.

▶ Predictions are influenced by the movie genre Z.

▶ Again decompose the observed X into two parts defined by their causal relationships with Y
and Z.

Z can be associated with Y through two paths.

▶ Conditioning on XY∧Z causes a dependence between Z and Y (collider). For example, if Adam
Sandler tends to appear in good comedy movies but bad movies of other genres then seeing
Sandler in the text induces a dependency between sentiment and genre.

▶ Z and Y may be associated due to a common cause (the dashed line). For example, fans of
romantic comedies may tend to give higher reviews (to all films) than fans of horror movies.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 120 / 176



Non-Causal Associations

▶ A predictor trained to predict Y from X will rely on X⊥Y , even though there is no causal connection
between Y and X⊥Y , and therefore will fail counterfactual invariance.

▶ X⊥Y serves as a proxy for Z, and Z is predictive of Y due to non-causal association.

▶ There are two mechanisms that can induce such associations: confoundedness and selection
bias.

▶ There is also dependency induced by between Y and Z by XY∧Z. Whether or not each of these
dependencies is spurious is a problem-specific judgement that must be made by each analyst based
on their particular use case.

Definition 4.4 (Purely Spurious)

We say that the association between Y and Z is purely spurious if Y ⊥ X | X⊥Z , Z.

That is, if the dashed-line association did not exist (removed by conditioning on Z) then the part of
X that is not influenced by Z would suffice to estimate Y.
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Observable Signatures of Counterfactually Invariant Predictors I

▶ Counterfactual invariance is defined by the behavior of the predictor on counterfactual data that
is never actually observed.

▶ Instead, we’ll derive a signature of counterfactual invariance that actually can be measured
using ordinary datasets where Z (or a proxy) is measured.

▶ Intuitively, a predictor f is counterfactually invariant if it depends only on X⊥Z .

▶ The following lemma ensures that X⊥Z is well-defined.

Lemma 4.1

Let X⊥Z be a X-measurable random variable such that, for all measurable functions f , we have that
f is counterfactually invariant if and only if f (X) is X⊥Z -measurable. If Z is discrete then such a
X⊥Z exists.
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Observable Signatures of Counterfactually Invariant Predictors II

Theorem 4.2 (Signatures of Counterfactual Invariance)

If f is a counterfactually invariant predictor:

1. Under the anti-causal graph, f (X) ⊥ Z | Y.

2. Under the causal-direction graph, if Y and Z are not subject to selection (but possibly con-
founded), f (X) ⊥ Z.

3. Under the causal-direction graph, if the association is purely spurious, Y ⊥ X | X⊥Z , Z, and
Y and Z are not confounded (but possibly selected), f (X) ⊥ Z | Y.

▶ In the fairness setting, counterfactual invariance is equivalent to counterfactual fairness.

▶ f (X) ⊥ Z: demographic parity.

▶ f (X) ⊥ Z | Y: equalized odds.
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Causal Regularization I

▶ We cannot directly enforce counterfactual invariance without access to counterfactual examples.

▶ However, we can require a trained model to satisfy the counterfactual invariance signature of
Theorem 4.2.

▶ Y and Z are binary. The regularization terms are

marginal regularization =MMD(P( f (X) | Z = 0), P( f (X) | Z = 1)) (4.7)

conditional regularization =MMD(P( f (X) | Z = 0, Y = 0), P( f (X) | Z = 1, Y = 0)) (4.8)

+ MMD(P( f (X) | Z = 0, Y = 1), P( f (X) | Z = 1, Y = 1))

where MMD (Maximum Mean Discrepancy) is a metric on probability measures.

▶ f (X) ⊥ Z is equal to Equation (4.7) = 0.

▶ f (X) ⊥ Z | Y is equal to Equation (4.8) = 0.

▶ We can estimate the MMD with finite data samples.
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Causal Regularization II

▶ A key point is that the regularizer we must use depends on the true causal structure.

▶ The conditional independence signature of Theorem 4.2 is necessary but not sufficient for coun-
terfactual invariance.

▶ Unfortunately, the gap between the signature and counterfactual invariance is a fundamental
restriction of using observational data.
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Experiment

To verify the following claims

1. Stress test violations can be reduced by suitable conditional independence regularization.

2. This reduction will improve out-of-domain prediction performance.

3. To get the full effect, the imposed penalty must match the causal structure of the data.

Setting

▶ For each experiment, we use BERT finetuned to predict a label Y from the text as our base model.

▶ Marginal regularization for causal-confounded structure.

▶ Conditional regularization for anti-causal structure.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 126 / 176



Robustness to Stress Test I

In this part, we build experimental datasets using Amazon reviews from the product category Cloth-
ing, Shoes, and Jewelry.
Synthetic

▶ To study the relationship between counterfactual invariance and the distributional signature of
Theorem 4.2, we construct a synthetic confound.

▶ For each review, we draw a Bernoulli random Z, and then perturb the text X so that the common
words ’the’ and ’a’ carry information about Z: for example, we replace ’the’ with the token
’thexxxxx’ when Z = 1.

▶ Y: the review score.

▶ This data has anti-causal structure: the text X is written to explain the score Y.

▶ We expect that the Y, Z association is purely spurious, because ’the’ and ’a’ carry little informa-
tion about the label.

▶ Model is trained on P(Y = Z) = 0.3.
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Robustness to Stress Test II

▶ We then create perturbed stress-test datasets by changing each example Xi(z) to the counterfac-
tual Xi(1− z)

▶ Measurement: checklist failures, which is measured by the frequency that the predicted label
changes due to perturbation as well as the mean absolute difference in predictive probabilities
that is induced by perturbation.

Fig. 4.7: Regularizing conditional MMD improves counterfactual invariance on synthetic anti-causal data.
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Robustness to Stress Test III

From Figure 4.7, we observe

▶ Left: lower conditional MMD implies that predictive probabilities are invariant to perturbation.
Although marginal MMD penalization can result in low conditional MMD and good stress test
performance, this comes at the cost of very low in-domain accuracy.

▶ Right: MMD regularization reduces the rate of predicted label flips on perturbed data, with
little affect on indomain accuracy.

Natural

▶ We now take Z to be the score, binarized as Z ∈ {1 or 2 stars, 4 or 5 stars}.
▶ Z is a proxy for sentiment and we consider problems where sentiments should not have a causal

effect on Y.

▶ Y: the helpfulness score of the review.

▶ This data has causal structure: readers decide whether the review is helpful based on the text.
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Robustness to Stress Test IV

▶ For the anti-causal problem, we take Y to be whether ’Clothing’ is included as a category tag for
the product under review. This is anti-causal because the product category affects the text.

▶ Stress test: randomly changing adjectives in the examples (positive→ negative).

Fig. 4.8: Penalizing the MMD matching the causal structure improves stress test performance on natural product
review data.
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Robustness to Stress Test V

▶ Regularizing to reduce the MMD that matches the causal structure does indeed reduce sensitivity
to perturbations.

▶ Note that penalizing the + wrong MMD may not help: the marginal MMD hurts on the anticausal
dataset.
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Domain Shift

▶ Amazon review data described above.

▶ We control the strength of the spurious association between Y and Z.

▶ Anti-causal: randomly subset the data to enforce a target level of dependence between Y and Z.

▶ Causal: Y = 1[V > TZ] where TZ is a Z-dependent threshold and V is the number of helpfulness
votes.

▶ Choose P(Y = 0 | Z = 0) = P(Y = 1 | Z = 1) = γ.

▶ Models are trained on γ = 0.3.
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Fig. 4.9: The best domain-shift robustness is obtained by using the regularizer that matches the underlying causal
structure of the data.



Domain Shift

▶ First, the unregularized predictors do indeed learn to rely on the spurious association between
sentiment and the label.

▶ The regularization that matches the underlying causal structure yields a predictor that is (ap-
proximately) counterfactually invariant.

▶ Such models have somewhat worse in-domain performance, because they no longer exploit the
spurious correlation.
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Conclusion

▶ We use the tools of causal inference to formalize and study perturbative stress tests.

▶ A main insight of the paper is that counterfactual desiderata can be linked to observationally-
testable conditional independence criteria.

▶ This requires consideration of the true underlying causal structure of the data.

▶ Done correctly, the link yields a simple procedure for enforcing the counterfactual desiderata,
and mitigating the effects of domain shift.

▶ The main limitation of the paper is the restrictive causal structures we consider.
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Causal Generative Modeling I

▶ Generative Modeling: to produce samples that mimic the characteristics of the training data.

▶ Controllable Generation: techniques that allow us to enforce a set of attributes that novel samples
should satisfy.

▶ Causal Generative Modeling (CGM) offers a causal perspective on controllable generation and
sample editing by estimating an interventional or counterfactual distribution, respectively.

▶ Structural assignment learning: techniques demanding some domain knowledge of the under-
lying causal graph. Note that these methods rely on the absence of any hidden confounders.

▶ Causal disentanglement: methods exist that relax this requirement.

We select one representative work for each category.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 137 / 176



Structural Assignment Learning I

▶ T itle: Counterfactual Generative Networks

▶ Author: Axel Sauer1,2, Andreas Geiger1,2 (1Max Planck Institute for Intelligent Systems, Tübin-
gen, 2University of Tübingen)

▶ Published: International Conference on Learning Representations, ICLR 2021

▶ Deep classifiers tend to exploit spurious correlations with low-level texture or the background
for solving the image classification task.

▶ We propose to decompose the image generation process into independent causal mechanisms that
we train without direct supervision.

▶ By exploiting appropriate inductive biases, these mechanisms disentangle object shape, object
texture, and background; hence, they allow for generating counterfactual images.
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Introduction

▶ Independent Mechanisms (IM): a causal generative process is composed of autonomous modules
that do not influence each other.

▶ In the context of image classification (e.g., on ImageNet), we can interpret the generation of an
image as a causal process.

▶ We decompose this process into separate IMs, each controlling one factor of variation (FoV) of
the image.

▶ Concretely, we consider three IMs: one generates the object’s shape, the second generates the
object’s texture, and the third generates the background.

▶ With access to these IMs, we can produce counterfactual images, which is helpful for the out-of-
domain robustness.
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Problem Setting

▶ x: high-dimensional observations (e.g. images); y: corresponding labels.

▶ An SCM C is defined as a collection of d (structural) assignments

Sj := f j

(
PAj, Uj

)
, j = 1, ..., d

where each random variable Sj is a function of its parents PAj ⊆ {S1, ..., Sd} \ {Sj} and a noise
variable Uj.

▶ The functions fi are independent mechanisms, intervening on one mechanism f j does not
change the other mechanisms.

▶ Our goal is to represent the image generation process with an SCM.

▶ If we learn a sensible set of IMs, we can intervene on a subset of them and generate interven-
tional images xIV .

▶ To generate a set of counterfactual images xCF, we fix the noise W and randomly draw a, which
corresponds to a class label that we provide as input, denoted as yCF.
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Counterfactual Generative Network I

▶ We assume the causal structure to be known, and consider three learned IMs for generating shape,
texture, and background, respectively.

▶ Here, we consider MNISTs and ImageNet. The two SCM’s are as follows:

MNISTs ImageNet

M := fshape (Y1, U1) M := fshape (Y1, U1)

F := ftext,1 (Y2, U2) F := ftext (Y2, U2)

B := ftext,2 (Y3, U3) B := fbg (Y3, U3)

Xgen := C(M, F, B) Xgen := C(M, F, B)

where M is the mask, F is the foreground, B is the background, Uj is the exogenous noise, Yj is
the class label, Xgen is the generated image, and f j and C are the independent mechanisms.

▶ In both cases, the learned IMs feed into another, fixed, IM: the composer.
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Counterfactual Generative Network II

▶ An overview of our CGN is shown in Figure 5.1.

▶ For the experiments on ImageNet, we initialize each IM backbone with weights from a pre-
trained BigGAN-deep-256.

▶ BigGAN-deep-256 is the current SOTA for conditional image generation, but it cannot generate
images of only texture or only background.
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Counterfactual Generative Network III

Fig. 5.1: Counterfactual Generative Network (CGN). Here, we illustrate the architecture used for the ImageNet
experiments. The CGN is split into four mechanisms, the shape mechanism fshape, the texture mechanism ftext,
the background mechanism fbg, and the composer C. Components with trainable parameters are blue, compo-
nents with fixed parameters are green.

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 143 / 176



Composition Mechanism

▶ The function of the composer is not learned but defined analytically.

▶ Given the generated masks, textures and backgrounds, we composite the image xgen using alpha
blending, denoted as C:

xgen = C(m, f, b) = m⊙ f + (1−m)⊙ b

where m is the mask, f is the foreground, and b is the background. The operator ⊙ denotes
elementwise multiplication.

▶ This fixed composition is a strong inductive bias in itself − the generator needs to generate
realistic images through this bottleneck.

▶ To get a stronger and more stable supervisory signal, we, therefore, use an unconstrained, con-
ditional GAN (cGAN) to generate pseudo-ground-truth images xgt from noise u and label y.

▶ We feed the same u and y into the IMs to generate xgen and minimize a reconstruction loss
Lrec(xgt, xgen).
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Shape Mechanism

▶ We model the shape using a binary mask predicted by shape IM fshape, where 0 corresponds to
the background and 1 to the object.

▶ This mechanism implements foreground segmentation.

▶ The loss is comprised of two terms: Lbinary and Lmask. Lbinary is the pixel-wise binary entropy
of the mask. Lmask prohibits trivial solutions.

▶ We add a pre-trained U2-Net as a head on top of the BigGAN backbone.

▶ The U2-Net was trained for salient object detection on DUTS-TR.

▶ By fine-tuning the BigGAN backbone, we learn to generate images of the relevant part with
exaggerated features to increase saliency. We refer to these as pre-masks m̃.
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Texture Mechanism

▶ The texture mechanism ftext is responsible for generating the foreground object’s appearance,
while not capturing any object shape or background cues.

▶ We, therefore, sample patches from the full composite image and concatenate them into a grid.

▶ We denote this patch grid as pg. The patches are sampled from regions where the mask values
are highest (hence, the object is likely located).

▶ We then minimize a perceptual loss between the foreground f (the output of ftext) and the patch-
grid: Ltext(f, pg).
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Background Mechanism

▶ The background mechanism fbg needs to capture the background’s global structure while the
object must be removed and inpainted realistically.

▶ we exploit the same U2-Net as used for the shape mechanism fshape.

▶ Again, we feed the output of the BigGAN backbone through the U2-Net with fixed weights.
However, this time, we minimize the predicted saliency.

▶ Over the progress of training, this leads to the object shrinking and finally disappearing, while
the model learns to inpaint the object region.

▶ We refer to this loss as Lbg.
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Fig. 5.2: Individual IM Outputs over Training. The arrows indicate the beginning and end of the training. The
initial output of the pre-trained models is gradually transformed while the composite image only marginally
changes.



Experiment I

1. Does our approach reliably learn the disentangled IMs on datasets of different complexity?
(Qualitative Results)

2. Which inductive biases are necessary to achieve this?

3. Do counterfactual images enable training invariant classifiers?

We first apply our approach to different versions of MNIST: colored-, double-colored- and Wildlife-
MNIST, then scale our approach to ImageNet.
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Experiment II

Fig. 5.3: MINISTs.

▶ The results on Wildlife MNIST are surprisingly good, considering that the object texture is only
observable on the relatively thin digits.

▶ All experiments on MNIST are done without pre-training any network.
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Experiment III

Fig. 5.4: ImageNet Counterfactuals.

The CGN can fail to produce high-quality texture maps for very small objects, e.g., for a bird high up
in the sky.
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Loss Ablation

▶ Disable one loss at a time.
▶ The composite images are on the image manifold, hence, we can calculate their Inception score

(IS).
▶ To measure if the CGN collapsed during training, we monitor the mean value of the generated

mask µmask. A µmask close to 1 means that ftext is not training. The same is true for µmask close
to 0 and fbg.

Fig. 5.5: Loss Ablation Study.
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Counterfactual Images for Training of Invariant Classifiers I

MNIST

Fig. 5.6: MNISTs Classification. In the test set, colors and textures are randomized, only the digit’s shape corre-
sponds to the class label. Random performance is at 10%.
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Counterfactual Images for Training of Invariant Classifiers II

IN-9

▶ BG-Gap: measure a classifier’s dependence
on the background signal.

▶ SIN: stylized ImageNet.

▶ For Mixed-Rand, the backgrounds are ran-
domized, while the object remains un-
changed.

▶ For Mixed-Same they sample class-consistent
backgrounds.

▶ Directly training on Mixed-Rand leads to a
drop in performance on the original data
which might be due to the smaller training
dataset.

Fig. 5.7: Accuracies on IN-9. The reported accuracies are
all obtained using a Resnet-50.
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Conclusion

▶ Three independent mechanisms: shape, textual and background.

▶ We structure a generative network into independent mechanisms to generate counterfactual
images useful for training classifiers.

▶ We demonstrate our approach on various MNIST variants as well as ImageNet.

▶ This paper links two previously distinct domains: disentangled generative models and robust
classification.
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Causal Disentanglement

▶ Now we focus on methods that do not require the specification of any underlying causal graph.

▶ Instead, they identify both the underlying graph and the structural assignments between the vari-
ables, thus learning a set of causally disentangled representations.

▶ These methods do not require access to the complete causal graph G, instead requiring practi-
tioner knowledge about the generative variables Z of interest.

Definition 5.1 (Causal Disentanglement)

We say a set of representations Z, s.t. X = g(Z) for some mapping g, are causally disentangled if
they permit the factorization

p (z1, .., zK) =
K

∏
i=1

p (zi | pa (zi))

where pa (Zi) ⊂
{

Zj

}
j ̸=i
∪ ϵi and ϵi is the exogenous causal factor of Zi.
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CausalVAE

▶ T itle: CausalVAE: Disentangled Representation Learning via Neural Structural Causal Models

▶ Author: Mengyue Yang1,2, Furui Liu1,∗ Zhitang Chen1, Xinwei Shen3, Jianye Hao1, Jun Wang2

(1Noah’s Ark Lab, Huawei, 2University College London, 3The Hong Kong University of Science
and Technology)

▶ Published: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021.

▶ The framework of variational autoencoder (VAE) is commonly used to disentangle independent
factors from observations.

▶ However, in real scenarios, factors with semantics are not necessarily independent. Instead,
there might be an underlying causal structure which renders these factors dependent.

▶ CausalVAE: includes a Causal Layer to transform independent exogenous factors into causal
endogenous ones that correspond to causally related concepts in data.
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Introduction I

Conventional Disentangled Method

▶ Observations counld be represented by limit concepts.

▶ Concepts are totally independent.

▶ Using unsupervised VAE-based method.

Problems in traditional disentanglement works

▶ The concepts are causally related.

▶ Unsupervised process could not guarantee the learned representations is identifiable.
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Introduction II
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Motivation

Learning disentanglement representations which align to real world concepts:

▶ Structural Causal Models.

▶ To guarantee identifiable representations, we introduce supervision signal.

Achieve do-operation on causal representation

▶ The changing on representation will be reflected on reconstruct images.

▶ Allow reasoning with interventions and counterfactuals.

Learning causal graph automatically.
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Fig. 5.8: Model structure of CausalVAE.



Transforming Independent Exogenous Factors into Causal Representations I

In addition to the encoder and the decoder structures, we introduce a Structural Causal Model (SCM)
layer to learn causal representations.

▶ Consider n concepts of interest in data which are causally structured by a DAG with adjacent
matrix A.

▶ The Causal Layer exactly implements a Linear SCM

z = ATz + ϵ =
(

I −AT
)−1

ϵ, ϵ ∼ N (0, I)

where A is the parameters to be learnt in this layer. ϵ are independence Gaussian exogenous
factors. zi is the lower dimensional representation of i-th concept.

▶ A is the causal graph. (e.g. z1 → z3) z1

z2

z3

 =

 0 0 1
0 0 0
0 0 0


T  z1

z2

z3

+

 ϵ1

ϵ2

ϵ3

 =

 0 + ϵ1

0 + ϵ2

z1 + ϵ3


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Transforming Independent Exogenous Factors into Causal Representations II

▶ Unsupervised learning of the model might be infeasible due to the identiability issue.

▶ We adopt additional information u associated with the true causal concepts as supervising sig-
nals.

▶ In our work, we use the labels of the concepts.

▶ We propose a conditional prior p(z | u) to regularize the learned posterior of z.

▶ We also leverage u to learn the causal structure A.
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Structural Causal Model Layer

▶ Once the causal representation z is obtained, it passes through a Mask Layer to reconstruct itself.

▶ We have a set of mild nonlinear and invertible functions [g1, g2, ..., gn] that map parental vari-
ables to the child variable.

zi = gi (Ai ◦ z; ηi) + ϵi (5.1)

where ◦ is the element-wise multiplication and ηi is the parameter of gi(·).
▶ This layer makes intervention or do-operation possible.

▶ To intervene zi, we set zi on the RHS of Equation (5.1) to a fixed value and then its effect is
delivered to all its children as well as itself on the LHS of Equation (5.1).
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Learning Strategy I

Inference Model qϕ(z, ϵ | x, u)

▶ Encoder transform observations X into ϵ

▶ A Causal layer generate causal representation

z =
(

I − AT
)−1

ϵ

▶ Introduce additional observation u: z satisfy conditional Gaussian z ∼ N
(
λ1(u), λ2

2(u)
)
, where

u is additional observation.

Generative Model
pθ(x, z, ϵ | u) = pθ(x | z, ϵ, u)pθ(ϵ, z | u)

▶ Introduce a Mask Layer
zi = gi (Ai ◦ z; ηi) + ϵi

▶ Achieve do-operation

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 165 / 176



Learning Strategy II

Given data set X with the empirical data distribution qX (x, u)

EqX [log pθ(x | u)] ≥ ELBO = EqX

Eϵ,z∼qϕ [log pθ(x | z, ϵ, u)]−D
(
qϕ(z, ϵ | x, u)||pθ(x, z | u)

)︸ ︷︷ ︸
Intractable


Thanks to the one-to-one correspondence between ϵ and z.

▶ Inference model : qϕ(ϵ, z | x, u) = qϕ(ϵ | x, u)δ(z = Cϵ) = qϕ(z | x, u)δ
(
ϵ = C−1z

)
, where

C =
(

I −AT)−1.

▶ Generative model: pθ(ϵ, z | u) = pϵ(ϵ)pθ(z | u)

Tractable ELBO

ELBO = EqX

[
Eqϕ(z|x,u) [log pθ(x | z)]−D

(
qϕ(ϵ | x, u)∥pϵ(ϵ)

)
−D

(
qϕ(z | x, u)∥pθ(z | u)

)]
Addtional Constraints:
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Learning Strategy III

▶ Acyclic constraint: H(A) ≡ tr ((I + A ◦A)n)− n = 0.

▶ Constraint in Mask Layer:

lu = EqX
∥∥∥u− σ

(
ATu

)∥∥∥2

2
≤ κ1

lm = Ez∼qϕ

n

∑
i=1
∥zi − gi (Ai ◦ z; ηi)∥

2 ≤ κ2
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Experiment I

Synthetic

Fig. 5.9: The results of Intervention experiments on the pendulum dataset.
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Experiment II

Real world benchmark

Fig. 5.10: Results of CausalVAE model on CelebA(SMILE).
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Experiment III

The mutual information (MIC/TIC) between the learned representation and the ground truth con-
cept labels of all compared methods.
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Experiment IV

Fig. 5.11: The learning process of causal matrix A. The concepts include: GENDER, SMILE, EYES OPEN,
MOUTH OPEN (top-to-bottom and left-to-right order); (c) converged A, (d) ground truth (from causal GAN).

Silin Du (MS&E) Introduction to Causal Inference September 4, 2023 171 / 176



Conclusion

▶ CausalVAE: includes a SCM layer to model the causal generation mechanism of data.

▶ We prove that the proposed model is fully identifiability given additional supervision signal.

▶ Experimental results with synthetic and real data show that CausalVAE successfully learns rep-
resentations of causally related concepts and allows intervention to generate counterfactual out-
puts as expected.

▶ How to choose the additional supervised signal in more general situation?
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